Study of S.F.N. Network on the Digital Terrestrial Broadcasting

It is important problem to consider the optimum S.F.N. network on the digital terrestrial broadcasting but it will require a great deal of labor and a lot of time.

This paper describe about one method on the electro magnetic wave propagation simulation system "AREAKAKUBEH".

1. はじめに
このたび電波伝播シミュレーションシステム「エリアかくべえ」において、デジタル・テレビ用のS.F.N対応システムの第1バージョンを開発したので、その概要を紹介する。

今回のバージョンは、例えば県域エリアを一つ設定し、その中に多数のS.F.N送信所を配置した場合の、S.F.N可能地点及び妨害が発生する地点を色別で識別する事ができる。

第2バージョン以後では、各送信所毎のサービスエリアを設定し、各々について検討できるものにするが、この場合は、各々のサービスエリアを記憶するデータベースの形式を定める必要が有り現在検討中である。またS.F.N同士の妨害検討や単独局とS.F.Nの妨害関係についても検討可能でシステムを構築する予定である。

2. ルート図の作成
本システムでは、まず全ての送信所及び中継回線のルート図を作成し、同時に遅延に関する数値を設定する方式を取っている。

Fig. 1 Selection of investigate area
映像情報メディア学会技術報告

Fig. 1の日本地図からSFNの送信所がある地域を選択すると、その地域内のSFN対象送信所の一覧表が現われ、Fig. 2の表で演奏所からその送信所までの中継ルートを設定する。

Fig. 2 List of relay route

この時または以後に、各送信所と中継所の伝送遅延（給電線による遅延）、機器遅延（機器類による遅延）及び調整遅延（遅延装置による遅延設定値）などを入力する。伝搬路による遅延は自動的に計算し枠内に記入される。

この表をFig. 3に示す。

この入力が完了するとFig. 4のルート図が描かれる。

各中継所及び各送信所に関する設定一覧表をCSV形式で出力すれば、Table 1のようにエクセルなどの表計算ソフトで、整理して見ることができる。

Table 1 List of transmission site
3. SFN計算例

SFNでは当然のことながら周波数が同じであるため、従来型の多チャンネル使用のアナログ放送とは考え方が異なる。

一例として、当局の主要送信所18局のみで県内をほぼ網羅する組み合わせを考え、アナログ・テレビの場合と同様の水平・垂直パターンを使用し、送信出力を10分の1にしてSFNを構築するとFig. 5, 6のようになる。

次に、すべての送信所の垂直パターンをFig. 9に示すように、水平方向が上部のノルポイントになるように変更するとFig. 7, 8のようになる。

ここでFig. 5と7の灰色部分は可視聴最低電界に達していない地点を示す。

Fig. 6と8の地点の色付けは、所要D/Uを満足できず、所要D/Uに対して不足するD/U値をマイナスのマージンとして色分けで示している。

垂直指向性的改善によって、無駄な不要電波が抑制され、なお且つ、SFNも構築し易くなっていることが良く分かる

Fig. 9に垂直指向性の変更例を示す。
従来のアナログテレビでは、垂直パターンの水平より上部はピークを中心に反転した垂直パターンで考えていたが、SFNでは、水平方向及び水平より上部の電界が重要となるため、詳しく垂直パターンを調べ、今回は仮に上部のナルポイントが水平方向になるようにチルトを掛けてみた。

アンテナメーカーの話によると、ナルフィルインが掛けられたアンテナの場合、一般にピークより上部に大きなナルが発生する場合が多いが、まれに、ピークの上下共にナルフィルインが掛かる場合もあるようなので、垂直パターンの水平より上部の指向性については、注意が必要である。

Fig.9の場合は、仮に作ったもので、実現可能とは限らないものである。

4. 受信アンテナの指向性
SFNでは受信アンテナによる指向性を考慮しないと実現が難しい。この指向特性については、電通技報の答申のものを使うが、将来、受信電界によって指向特性を変えた方が現実的で統一されると考えられるので、Fig.10のような設定表と仮の指向性を準備しているが、いずれも変更可能である。

5. 交叉偏波の識別
SFNでは交叉偏波を巧みに使うことが求められる。この場合、受信アンテナの主ビーム方向の交叉偏波識別度を以下の表で設定できる。

しかし、交叉偏波は、受信アンテナの方向によ
て異なるため、交差偏波識別指向特性が必要になる。これも電通技報の答申のものを使うが、将来その他の特性が必要になった場合の対応も可能。

Fig.11 Orthogonal wave polarization

6. SFNの基本設定

SFN特有の設定としてガードインターバル、シンポール長、同一プログラムの場合の再現回数、などがある。

その他に、コンピューター・シミュレーション上の設定などをFig.12の設定表に入力する。
①メッシュデーターと計算ピッチについては最初は荒く、次第に詳細に検討していくと時間の節約になる。
②計算式については、申請書類の場合は郵政方式で実施するが、その他の計算方式も採用できる。

Fig.12 Example of D/U

7. 詳細な検討

送信アンテナの指向性、送信電力、偏波などの様々な改善を実施するツールとして、Fig.14の妨害一覧表、Fig.15の妨害状況立体表示、Fig.16のOK人口、NG人口一覧表、などがある。

7-1. 問題地点の発見

Fig.13に妨害が認められる地図を紹介する。

Fig.13 Interference area

D/Uマージンがマイナスで指定されていることがある場合、色がついている地点のD/Uが不足していることを示す。この場合に、カーネルを合わせクックするとFig.14の表が現れ、全ての妨害局からの電界その他のデーターを見ることができる。

Fig.14 List of interference site

また同時に、Fig.15-1に示す、妨害波がどの方向からの大きな大きさで飛んでいるか、その波の遅延状態はガードインターバルの内側か外側か、遅延は進みか遅れかなどが一目でわかる立体表示画面が現れる。この表示はFig.15-2の制御が可能なため実に使い易い。

7-2. 人口の検討
8. 計算の要領
計算を開始するには Fig.17 の設定が必要となります。ガードインターバル長、シンボル長、及び同一プログラムの場合のシンボル繰り返し可能回数などを設定し、メッシュデーターと計算ピッチを上手に選びながら、繰り返し検討を重ねる。

Fig.17 Propety of calculation

9. 極
S.F.Nを構築する場合、送信アンテナの垂直面の指向性が極めて重要であることから、送信アンテナの3次元パターンを簡単に計算できる新たなシステムが必要であることを痛感している。

10. 今後の検討
冒頭に説明したように、今回の一覧および今後引き続き一層検討し良いシステムに成長させていく所存である。全送信所及び全通信の最適遅延等を自動的に計算できるシステムや、最適に改善すべき障害局の自動抽出システムなども視野に入れている。