ダンスにおける身体動作表現に関わる物理量と印象との関係

井上正之 1,2 岩舘祐一 3 鈴木良太郎 2 柴真理子 4 萩沼真 2

広島工業大学工学部 1 NHK放送技術研究所 3
〒731-5193 広島市佐伯区三宅 2-1-1 〒157-8510 東京都世田谷区砧 1-10-11
TEL: 082-921-3121 TEL: 03-5494-2786
Email: minoue@cc-it.hiroshima.ac.jp Email: iywadate@strl.nhk.or.jp
（株）ATR知能映像通信研究所 2
〒619-0288 京都府相楽郡精華町谷台 2-2 〒657-0011 神戸市灘区鷹甲 3-11
TEL: 0774-95-1461 TEL: 078-803-0979
Email: [inoue,yotaro,tademuma]@mic.atr.co.jp Email: shiba@kobe-u.ac.jp

マルチメディアを利用したイメージ表現技術の一環として、身体動作から感性特徴量を抽出する方法について検討した。様々な身体動作から効率良く、動きの基本的なパターンを収集するために、創作ダンスに着目した。そこでは、各種の動きを洗練されたものにするための努力が行われており、比較的容易に素材となるパターンが収集できると考えだからである。ダンスの基本パターンを映像化して得られた素材画像を対象に、心理要因の抽出及び物理量の計測を行った。心理要因の抽出は、SD法による心理評価結果を主成分分析して求めた。感性特徴量の抽出は、心理要因と物理量に重回帰分析を適用することによって行った。

キーワード 感性情報処理、身体動作、重回帰分析、感性特徴量

Relationship between Impression and Body-Movements in Dance Scenes

Masayuki INOUE, Yuichi IWADATE, Ryotaro SUZUKI, Mariko SHIBA and Makoto TADENUMA

Hiroshima Institute of Technology
2-1-1 Miyake Saeki-ku Hiroshima, 731-5193
TEL: 082-921-3121
Email: minoue@cc-it.hiroshima.ac.jp

ATR Media Integration & Communications Research Laboratories
2-2 Hikaridai Seika-cho Souraku-gun Kyoto, 619-0288
TEL: 0774-95-1461
Email: [inoue,yotaro,tademuma]@mic.atr.co.jp

NIHK Science & Technical Research Laboratories
1-10-11 Kinuta Setagaya-ku Tokyo, 157-8510
TEL: 03-5494-2786
Email: iywadate@strl.nhk.or.jp

Kobe University
3-11 Tsunakabuto Nada-ku Kobe, 657-0011
TEL: 078-803-0979
Email: shiba@kobe-u.ac.jp

Abstract
Kansei feature extraction from body-movements has been investigated as a part of development of image expression techniques using multimedia. We chose dance as a subject of our research, because dance performers can present fundamental and typical motion patterns efficiently. It is shown that three psychological factors were extracted through SD test and principal component analysis and also shown that human body-movement can be expressed by linear combinations of physical parameters measured for dance scenes through applying multiple regression analysis.

key words Kansei information processing, Human motion, Multiple regression analysis
1. はじめに
視覚情報は情報全体の6割を占めるとも言われている。コミュニケーション技術においても、従来からの言語を主体とした音声コミュニケーションに、視覚情報を中心としたマルチメディア情報を取り込むことによってコミュニケーション効率を飛躍的に高められるのではないかという期待がある。

このような背景のもとで、ATRではイメージコミュニケーション技術の研究に取り組んできた。その中にある、我々はイメージ表現技術、とくに人間の身振り手振りなどに代表されるノンパースーベルバナルな情報の中から感情や印象を読み取る方法、人間が頭の中に抱くイメージをマルチメディア技術を駆使して的確に表現する方法などについて、感性情報処理の側面から検討を進めてきた[122]。

本報告では、身体動作とその表現の関係について、これまで長い研究の歴史のある舞踊学での成果を参考にさせてもらい、身体動作から感性特徴量を抽出する方法について検討した例を紹介する。

2. 身体動作からの感性特徴量の抽出

2.1 イメージ表現と感性情報処理
イメージ表現技術の開発においては感性情報処理の研究が不可欠である。筆者らはこれまでに、その枠組みについて再三報告してきた[34][36]。従って、その詳細は省略するが、概要を図1に示す。

【図1】感性情報処理研究の枠組み

同図に示されるように、人間の感性に刺激を与える物理刺激としては色々考えられるが、本稿では、人間の身振り手振りに代表される身体表現を対象とした。

人間の身振り手振りなどの身体動作を系統立てて調べるとするとまず典型的な動きを体系的に収集する必要がある。そのような素材を比較的容易にしかも体系立てて提供してくれる対象として創作ダンスを選んだ。

2.2 身体動作の類型化
身体動作と表現の関係については、舞踊学において長い研究の歴史があり、本研究では、それらの研究を参考に、感性特徴量の抽出について検討した。

創作ダンスの分野では、古くから身体動作の特性を分析し、身体動作によってどのような表現が可能であるかが研究されてきた。その中で、創作ダンスの身体動作を、表1に示す7種類の基本的な動き（以下7 moties と呼ぶ）に分類する考え方が知られている[19]。本研究においてもこの分類にしたがって身体動作を類型化していくこととした。

表1 7 moties

<table>
<thead>
<tr>
<th>キーワード</th>
<th>ルールメント</th>
</tr>
</thead>
<tbody>
<tr>
<td>さりげない</td>
<td>Natural</td>
</tr>
<tr>
<td>楽しい</td>
<td>Happy</td>
</tr>
<tr>
<td>流れるような</td>
<td>Flowing</td>
</tr>
<tr>
<td>寂しい</td>
<td>Lonely</td>
</tr>
<tr>
<td>現動的な</td>
<td>Dynamic</td>
</tr>
<tr>
<td>舞い</td>
<td>Sharp</td>
</tr>
<tr>
<td>ごそかかな</td>
<td>Solemn</td>
</tr>
</tbody>
</table>

2.3 単純動作の収集
効率良く検討を進めていくために、まず、専門のダンサーに7 motiesに対応させて、歩く、跳ぶ、などの単純動作を踊ってもらい、評価及び分析
用の素材とすることにした。具体的には、表2に示す39種類の動き画像を準備した。

2.4 動きの印象に関わる心理要因の抽出

表2の素材画像を対象に、SD (Semantic Differential)法による印象評価実験を行い、それぞれの素材画像に対する印象を求めることとした。表3に、SD法で用いた形容詞対（評価語）を示す。

評価語の選定にあたって、事前に印象空間を限定することのないように、またイメージ全体を十分にカバーできるように、さらには浅いや特定の意味に集中することなくバランスよく選定することに留意した。形容詞対の数については、被験者の疲労を考慮し、評価時間との兼ね合いで40とした。

表3 SD法で用いた形容詞対（評価語）

1. 動い	21. 男性的な	41. 女性的な
2. 長着	22. 退屈な	42. 好きな
3. 古い	23. 退屈な	43. 退屈な
4. 下着	24. 女性的な	44. 女性的な
5. 新た	25. 女性的な	45. 女性的な
6. でき	26. 若さ	46. 若さ
7. 軽い	27. 若さ	47. 若さ
8. 軽い	28. 若さ	48. 若さ
9. あまり見な	29. 静かな	49. 静かな
10. なめらか	30. 静かな	50. 静かな
11. 柔らか	31. 静かな	51. 静かな
12. 順続	32. 静かな	52. 静かな
13. 順続	33. 静かな	53. 静かな
14. 小さい	34. 静かな	54. 静かな
15. 柔らか	35. 静かな	55. 静かな
16. 小さい	36. 静かな	56. 静かな
17. 小さい	37. 静かな	57. 静かな
18. おう	38. 静かな	58. 静かな
19. おう	39. 静かな	59. 静かな
20. 軽い	40. 静かな	60. 静かな

すなわち、考え方は、SD法の実施に際しては、評価対象から予想される印象空間に出来るだけ先入観を持たないように設定し、印象軸の絞り込みは評価データに対する主成分分析で行うことを意図した。

SD法による印象評価実験の結果により、主成分分析を行って印象軸の集約を行ったところ、表4に示すように、動きの印象に関わる心理要因として3つの主成分が抽出できた。

また、印象評価実験では、表1に示した7motivesと印象との関係を調べるために、SD法を行う際に同時に表2の各素材画像が7motivesのどれに相当するかを答えてもらった。その結果と各素材画像に対する主成分得点に基づいて重回帰分析を行い両者の関係を求めた。その結果、以下の重回帰式が得られた。

表4 主成分分析結果（主成分と因子負荷量）

<table>
<thead>
<tr>
<th>主成分</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>力 (力)</td>
<td>-0.456</td>
<td>0.814</td>
<td>-0.356</td>
</tr>
<tr>
<td>魅力 (魅力)</td>
<td>-0.372</td>
<td>0.759</td>
<td>-0.382</td>
</tr>
<tr>
<td>男 (男性)</td>
<td>-0.456</td>
<td>0.814</td>
<td>-0.356</td>
</tr>
</tbody>
</table>

Natural=0.0916-0.0308*P2-0.0262*P3
Happy=0.1619+0.0304*P1
Flowing=0.1907+0.0134*P1-0.0299*P2+0.0417*P3
Lonely=-0.1041-0.0241*P1
Dynamic=-0.1183+0.0210*P1+0.0158*P2
Sharp=0.0507+0.0214*P2-0.0299*P3
Solemn=-0.1197-0.0178*P1+0.0290*P3

各重回帰式における偏回帰係数の有意水準はいずれも0.01以下の強い結びつきを示した。その詳細は心理要因と物理量の関係と合わせて後出の図3に示す。

2.5 身体動作に関わる物理量の計測

物理量の計測については、まずどのような量を測るかが問題となる。ここでもまた前出の創作ダンスにおける研究例を参考とした。すなわち、時間、空間、力（エネルギー）のパラメタを関係した量に検討をつけて測ることにした[5][6]。その際、正確な身体動作をすることによりはむしろ身体動作の大まかな特徴を抽出することに重点をおき、身体の各部位の動きにはほどならず、全体的な動きを代表させるようにした。具体的には、図
2に示すように、素材画像をシルエット映像化し、その重心座標、外接矩形とシルエットの面積比などを考えることにした。また、ここでは身体の静的な形状ではなく動きに関係した量を抽出することが目的なので、時間方向の微分値等を用いることとした。すなわち、時間、空間、力のパラメータは、それぞれ身体動作の動きの速さ、身体の開閉性、動きの加速度等として計測できるものと考え、これらの物理量をもって感性特徴量の候補と考えた。

図2 ダンサーのシルエット画像

表5に示した物理量の一覧を示す。

表5 計測した物理量（物理特徴量の候補）

<table>
<thead>
<tr>
<th>空間</th>
<th>時間</th>
<th>力（エネルギー）</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X3</td>
<td>X4 X5</td>
</tr>
</tbody>
</table>

X1:空間面積比 シルエットの面積/外接矩形の面積
X2:フレーム間差分（フレーム間隔：3）
X3: FRONTの重心
X4:シルエットの重心のフレーム間差分（フレーム間隔：3）
X5: 4の微分
X6: 4のフーリエ変換（MID変換）

結果、以下の重回帰式が得られた。

\[
P_1 = 14.2786 - 34.0168 \times X1 + 1.3969 \times X4 - 0.0396 \times X5
\]

\[
P_2 = 5.1414 - 215.5072 \times X2 + 116.9486 \times X3 - 0.0202 \times X5
\]

\[
P_3 = 4.9777 - 7.1704 \times X1 - 29.7542 \times X2 + 0.0013 \times X6
\]

各重回帰式における偏回帰係数の有意水準を前出の7 motives と心理要因の場合を合わせて図3に示す。図で、要因相互を結ぶ線の太さが、それぞれ重回帰分析における偏回帰係数の有意水準を表している。これらより、心理要因と物理量の関係においては、表5で選択した物理量は全て有意水準0.05以下で心理要因と結びついており、妥当な選択であったことが分かる。

図3 ダンスに関わる感性特徴量の抽出

3 インタラクティブダンスシステム

―総合評価に代えて

以上、身体動作から感性特徴量を抽出する方法について述べてきたが、最終的に果たしてうまく抽出できたのかどうかが問題となる。

この疑問に答える仕掛けとして我々は以下に紹介するインタラクティブダンスシステムを試作した。すなわち、このシステムをユーザが楽しめるか否か、感性特徴量の抽出に成功しているか否かのパラメータとして使えないかと考え
たわけである。システムの詳細についてはすでに報告しているので、ここでは簡単に概略を示すに留めるが、2.4 節及び 2.6 節で示した重複帰式をつなげると、物理量から直接 7 motives を推測する関係式が得られる。そこで、ダンスシステムにこれらの式を実装することにより、リアルタイムで感性特徴量を抽出することができるようになる。

図 4 に、インタラクティブダンスシステムの構成を示す。

![図 4 インタラクティブダンスシステムの構成](image)

ユーザは、クロマキースタジオの中で、大型プロジェクトタに対面するように立ち、その動作を 1 台のカメラでキャプチャする。キャプチャされたユーザの映像は感性特徴量推定部に送られるとともに大型プロジェクトタ上に表示される。感性特徴量推定部では、上で述べた方法により、ユーザの身体動作から感性特徴量を抽出する。抽出された感性特徴量はマルチメディア制御部に送られる。マルチメディア制御部では、特徴に基づいて 7 motives を推定し、その推定結果に対応させて、ビデオスーパッチ、リアルタイムディスク、音楽制御部などを制御することにより、予め用意しておいたビデオクリップや音楽クリップを再生する。表 6 に各 motive に対応するコンテンツを示す。

このシステムでは、ユーザがパフォーマンスをすると、その動きに従ってコンテンツが切り替えられ、例えば、身体全体を大きく且つ重心の移動を伴うような動きをとると、笑いとの動きと解釈され、ユーザ自身の大型プロジェクトタに、笑いの特 徴 な 3 DCG コンテンツが表示され、レゲエの音楽が流れる。同時に、ユーザ自身の映像もビデオクリップ上に合成される。このように、ユーザは映像や音楽とインタラクションを持ちながらダンスを楽しむことができる。通常、ダンスをすること、音楽に合わせて踊るが、このシステムでは、ユーザが音楽をリードできるところが特徴である。

表 6 映像、音楽コンテンツ

<table>
<thead>
<tr>
<th>motives</th>
<th>事前情報</th>
<th>聴覚情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>さらげない</td>
<td>森の中のシーン</td>
<td>ジャズファンク</td>
</tr>
<tr>
<td>賢い</td>
<td>楽しい 3 DCG</td>
<td>レゲエ</td>
</tr>
<tr>
<td>流れるような</td>
<td>流れる雨、流れる水</td>
<td>ポサノバ</td>
</tr>
<tr>
<td>宿しき</td>
<td>流もいないプランクの白黒映像</td>
<td>フュージョン</td>
</tr>
<tr>
<td>舞動的</td>
<td>都合に人流れ</td>
<td>ハウス</td>
</tr>
<tr>
<td>舞い</td>
<td>強い動き、数字が流れていく映像</td>
<td>テクノ</td>
</tr>
<tr>
<td>ぶごちかわ</td>
<td>ハスの形を模にしたCG</td>
<td>エンジック</td>
</tr>
</tbody>
</table>

なお、本システムはその後様々な改良が加えられているが、ここに示したものはその最初のバージョンである。また、ユーザの評価については、現在までのところ、踊ってみた方々からは結構楽しむという感想を得ている。ただし、定常的な評価という段階には至っていない。

4 おわりに

本報告では、身体動作からの感性特徴量の抽出について、初期の考え方を中心に紹介した。このような研究においては、必要な素材をいかに系統立てて集められそれが一つのポイントになると考えられるが、未だ十分と言える状況には達していない。

ダンスシステムについては、本文中でも述べたように、その後かなりの改良が加えられている。本報告では、論点を感性特徴量の抽出というところに絞ったので、システムパラメータの決定やアルゴリズムについての説明は割愛した。

最後に、研究を進めるに当たり、色々とご議論いただいた ATR 所員の方々、素材作成において御協力いただいた神戸大学並びに天理大学の学生諸氏に感謝します。

参考文献

[3] 井上、田中、井上：「感性情報処理研究の枠
組みと感性評価法”，信学技報，HIP97-40，pp.81-87, 1998
[4] 岩戸、井上、鈴木：”身体動作からの感性特徴量の抽出に関する検討〜インタラクティブダンスへの応用〜”，映像学技報，MIP2000-72, pp.7-12, 2000