両域放送におけるビットレートの効率的配分の実現
～SI送出の平滑化とVBR化装置導入～

御崎 芳仁 村田 康博 松本 学 室田 孝昭 田中 秀和

日本テレビ放送网(株) 〒105-7444 東京都港区東新橋1-6-1
E-mail: { ymiski, murata, m-gaku, i-murota, hide }@ntv.co.jp

あらまし ウンセグ放送の限られた伝送帯域を有効活用するために、映像・音声・PSI/SI・データ放送などのビットレート設定を見直し、データ放送を対象とした VBR(Variable Bit Rate)化装置を導入した。これにより、各ビットレートの一部をダイナミックにデータ放送の帯域へ割り当てることができるようになり、結果として約5%の有効ビットレートの効率化が実証できた。
さらに、この技術を応用することで、マスターシス템切替時に発生する TS切替ショックを最小限に抑えるニアシームレス切替を効率的に行うことが可能となった。本発表では、その考え方と導入した結果を報告する。

キーワード ウンセグ、VBR、EPG、ニアシームレス切替

Efficient bit rate use of one-segment service of DTV
～ Smoothing of the SI-tables transmission and adoption of the VBR-adaptor ～

Yoshihito MISAKI Yasuhiro MURATA Gaku MATSUMOTO
Takaaki MUROTA ,and Hidekazu TANAKA

Nippon Television Network Corporation 1-6-1 Higashi Shimbashi, Minatoku, Tokyo, 105-7444 Japan
E-mail: { ymiski, murata, m-gaku, i-murota, hide }@ntv.co.jp

Abstract We reviewed the bit rate settings such as the video, the audio, the PSI/SI and the data broadcasting to use effectively the limited transmission bit rate of the one-segment service of DTV, and introduced the VBR (Variable Bit Rate) adapter for the data broadcasting. As a result, it came to be able to allocate a part of each bit rate to the bit rate of the data broadcasting dynamically, and the efficiency improvement of the bit rate availability of about 5% was able to be proven. In addition, by applying this technology efficiently we became able to change over to the backup system near-seamlessly that suppressed the TS switch shock to the minimum generated when the system was changed over.

Keyword one-segment service, VBR, EPG, near-seamless-change

1. ワンセグの伝送帯域

改修以前の日本テレビデジタル放送の送出ビットレートの設定値は下表の通りであった。

<table>
<thead>
<tr>
<th>ワンセグ</th>
<th>テレビ (映像・音声・字幕)</th>
<th>データ放送</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12セグ</td>
<td>14.9Mbps</td>
<td>1.5Mbps</td>
<td>270kbps</td>
</tr>
<tr>
<td>ワンセグ</td>
<td>275kbps</td>
<td>108kbps</td>
<td>17kbps</td>
</tr>
</tbody>
</table>

表1. 日本テレビデジタル放送の送出ビットレートの設定値(改修前)

12セグ(固定受信機用サービス)と比べて、数十分の1以下となる伝送データ量は、テレビ放送のそれとしては、決して大きいとは言えない。特にワンセグのSIに関しては、表1の通り17kbpsであり、TSパケット数では、1秒当たり100パケットにすぎない。従って、帯域を1kbps たといちず無駄にすることはできない。
そこで、本論文ではSI平滑化やVBR化装置の導入などにより、ワンセグの伝送データ量を増やすよう再構成を行ったので報告する。

2. 帯域の見直し

2.1. 帯域設定の目標

ワンセグの本放送は2006年4月から始まり、約2年が経過した。その中でワンセグの伝送データ量に関するいくつかの課題が明らかになった。そこで、実際の運用経験を生かし、各伝送データのビットレート配分について見直しを行い、最適化を行った。

まずは、PSI/SIについての検討を行った。本放送開始以来、日本テレビのワンセグEPG情報は3番組分の送出となる制約があった。これは、システムの
L-EIT(Event Information Table)パケットの送出アルゴリズムに起因するもので、L-EITパケットの送出平滑化が十分で無い為、最大送出TSビットレートと平均ビットレートの差が大きくなることにより発生していた。すなわち、番組数を多く取った際には最大ビットレートが非常に大きくなり、ビットレート設計上、映像や音声等の設定値を圧迫してしまうこととなる。
この原因を解決するため最大ビットレートと平均ビットレートの差を極力小さくする送出レートの平滑化を実施し、映像や音声などの送出ビットレートを現在の値に保持したまま、ワンセンEGP情報を規格上の最大値である10番組分まで出来る限り近づけたいと考えた。
また、データ放送についても、データ取得に時間がかかることによる表示の遅れに対する視聴者のストレス軽減やコンテンツの充実のために、伝送する情報量を大きくしたいとの要望が社内から挙がったため、可能な限り帯域を増やす方向で検討した。

2.2. SI平滑化
まず、ワンセン放送のEGP情報が3番組分しか送出できない制約を解消するために各SIの送出アルゴリズムを見直した。
SI平滑化前はA階層の各PSI/SIの送出タイミングはトータル管理されておらず、テーブル更新のタイミング等により送出TSパケットの粗密が現れてしまっていた。
上記問題点に対処する為、各SIを一旦パッファリングの上、送出タイミングを調整することにより、可能な限りSIの最大レートと平均レートとの差を無くすように送出レートを平滑化することを考えた。
ワンセンEGPのデータであるL-EIT[after]について、規格上2つのセクションに分割して送出することが可能であることに着目し、送出装置側で2つのセクションに分割するように改修し、かつ送出周期を図1のように設定した。

また、2秒以上の周期を持つSIテーブルにも着目し、SDT(Service Description Table)についても検討を行った。SDT1セクション分の2TSパケットを送出する際に、2秒周期でもほぼ同タイミングで2TSパケットを送出していたために最大レートが高くなってしまっていたが、1秒ごとにITSパケットを送出するように改修を行った。
これらの結果、SIの最大レートを抑えつつ、ワンセンEGPの番組数を増やすことが可能となった。
ここで単純に最大レートと平均レート差を接近させることのみを目指すのであればL-EIT[after]の周期をより短くすることも可能だが、周期を長く取ることにより発生するレート差分は次に紹介するVBR化装置により活用が可能となる為、敢えて実用面で十分と思われる5秒周期とした。

![図1: L-EIT[after]の平滑化](attachment://image1.png)

![図2: SIパケット配置（改修前）](attachment://image2.png)

![図3: SIパケット配置（改修後）](attachment://image3.png)

注: [1]～[4]はTSパケット数

改修前のSIパケット配置を図2に、改修後のSIパケット配置を図3に示した。各秒で送出されるパケットを積み上げて表示している。
これにより、平滑化実行後の最大レートは23kbps

18
（SDTT を最大で想定）、平均レートは約 15kbps となった。（差分の 8kbps は VBR 化装置によりデータ放送に転用される）

<table>
<thead>
<tr>
<th></th>
<th>最大ビットレート</th>
<th>平均ビットレート</th>
<th>ワンセグ EPG番組数</th>
</tr>
</thead>
<tbody>
<tr>
<td>改修前</td>
<td>17kbps</td>
<td>約 13.5kbps</td>
<td>3 番組</td>
</tr>
<tr>
<td>改修後</td>
<td>23kbps</td>
<td>約 16.5kbps</td>
<td>10 番組</td>
</tr>
</tbody>
</table>

表 2. 送出ビットレートの比較(SI)

3. ワンセグ VBR 化装置の導入

3.1. VBR 化装置

デジタル放送の映像・音声・字幕・EPG など、それぞれの伝送データ量は、常に一定ではなく、状況に応じて多少の変動が生じている。日本テレビでは、MUX(多重化装置)で A 階層の伝送データ量にオーバーフローが生じないように、それぞれの構成要素について論理的な最大(ビットレート)を MUX 入力で確保している。

通常の送出方法である CBR(Constant Bit Rate)では、最大値に達しない余った帯域は、『NULL TS パケット』と呼ばれる無効な TS パケットで埋められる(スタッキングする)ことになる。

従来は平均 20kbps 程度が無駄になっていたが、ワンセグ VBR 化装置を導入すると、スタッキングされていった無効領域を有効活用することが可能となる。

3.2. VBR 化装置の構成

図 4 は、VBR 化装置を導入した送出系である。

MUX は、地上デジタル放送の多重フレームに空き帯域(NULL TS パケット)がある間は送出ビットレートを上げるように VBR 化装置に伝達する。VBR 化装置が情報に基づき、出力ビットレートを変化させることで、常に無駄なく無効領域を活用することが可能となる。

同期して再生する必要のあるストリーム(PES)は、その伝送速度が大きく上下することは許されない。そのため、VBR 化はシーケンス形式のデータ放送に対して有効となる。

3.3. VBR 化装置の機能

VBR 化装置には、処理の順番に 4 つの機能がある。

①フィルタリング

入力された TS から指定された PIDだけを受け付け、それ以外を廃棄する。

②カルーセル再構成

出力ビットレートを可変にするため、入力されたカルーセルを積層し、再構成する。

③TS 出力

MUX の求むに応じて、再構成したカルーセルを VBR 化 TS として出力する。

④DII 送出周波の調整

データ放送に必須となる DII(Download Info Indication)の送出周波を ARIB 規格と整合するように調整する。

4. SI 平滑化と VBR 装置導入の結果

SI 平滑化と VBR 化装置の導入により、ワンセグ放送の EPG 番組数を 7 番組分増強し、かつ平均 20kbps 程度の実効ビットレートの増加が見込まれる。

これは、ワンセグ全体の帯域からすると、約 5%の送出ビットレート増加に等しい。

増加したビットレートをもとに、もう一度各伝送データのビットレート配分を見直した。その結果、以下に示す 2 つの問題点の解消・改善、さらに機能追加までを行うことができた。

4.1. データ放送の実効ビットレートの増加

増加する平均 20kbps の実効ビットレートを VBR 化装置によってすべてデータ放送に転用した。

データ放送コンテンツの大きさが変わらなければ、データ放送の取得時間は、従来よりも短くなり、視聴者にとってより利用しやすくなる。特定の PID にそのビットレートを集中させることで、25%〜60%の取得時間の改善が計られた。逆に、同じ取得時間であれば、より充実したコンテンツを表示させることが可能となる。

4.2. EPG サービスの拡大

EPG 情報は、番組情報が最大まで書き込まれた場合を想定して確保する必要があるため、番組数が増えると平均ビットレートと最大ビットレートの差が大きくなら傾向がある。今回、SI 平滑化によって SI 自体の
4.3. ニアシームレス切替
従来、日本テレビのマスターの現用・予備システム切り替えを実施すると、ワンセグサービスは、シームレス切替を行う12セグサービスと同タイミングでTSストリームが切り替わるため、映像が復帰するまでの数秒フレーズしてしまう状態であった。しかし、ニアシームレス化改修によって、1〜3フレーム程度で復帰するようになる。

![図3.ニアシームレス切替の仕組み](image)

映像の帯域(TSレート)

<table>
<thead>
<tr>
<th></th>
<th>約217kbps</th>
<th>約7kbps</th>
<th>13kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>テレビ(映像・音声・字幕)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>データ送信</td>
<td>約275kbps</td>
<td>約108kbps</td>
<td>約17kbps</td>
</tr>
<tr>
<td>改修前(設定値)</td>
<td>約275kbps</td>
<td>約102kbps</td>
<td>約23kbps</td>
</tr>
<tr>
<td>改修後(設定値)</td>
<td>約266kbps</td>
<td>約122kbps</td>
<td>約15kbps</td>
</tr>
<tr>
<td>改修後(実効値)</td>
<td>約266kbps</td>
<td>約122kbps</td>
<td>約15kbps</td>
</tr>
</tbody>
</table>

表3. 日本テレビ デジタル放送の送出ビットレート(改修後)

5. 最後に
本件ではワンセグサービスに対して、SI平滑化とVBR化装置の導入を行い、帯域の有効利用やニアシームレス切替を実現できたことを紹介した。今後も検証を続け、ワンセグ帯域の有効活用を取り組んで行きたい。

最後になりましたが、今回のプロジェクトにおいて、多大なる御助力をいただきました日本電気(株)の関係者の皆様に深く感謝致します。

文献