Comparison of control Lyapunov functions for end-effector orientation feedback control of robot manipulator

Abstract— In this paper, we propose an end-effector orientation feedback control method of a robot manipulator by using unit quaternion. Moreover, we confirm the effectiveness of proposed method by experiments and compare conventional method with proposed method.

Key Words: manipulator, quaternion, orientation

3 定義

本研究において四元数 q を

\[
q = \begin{pmatrix}
 r_0 \\
 r_1 \\
 r_2 \\
 r_3
\end{pmatrix}
\] (1)

の列ベクトルとし、オイラー角の 3 つの要素であるロール・ピッチ・ヨー角をそれぞれ R,P,Y と表す。

4 表現の変換

4.1 行列から四元数への変換

姿勢行列 M が

\[
M = \begin{pmatrix}
 m_{11} & m_{12} & m_{13} \\
 m_{21} & m_{22} & m_{23} \\
 m_{31} & m_{32} & m_{33}
\end{pmatrix}
\] (2)

のとき四元数では

\[
q = \begin{pmatrix}
 r_0 \\
 r_1 \\
 r_2 \\
 r_3
\end{pmatrix}
\] (3)

\[
r_0 = \frac{\sqrt{m_{11}^2 + m_{22}^2 + m_{33}^2 + 1}}{2}
\]

\[
r_1 = \frac{m_{23} - m_{32}}{4r_0}
\]

\[
r_2 = \frac{m_{31} - m_{13}}{4r_0}
\]

\[
r_3 = \frac{m_{12} - m_{21}}{4r_0}
\] (4)

と表される。$r_0 = 0$ のときは参考文献を参照。3)

4.2 四元数からオイラー角への変換

四元数が

\[
q = \begin{pmatrix}
 r_0 \\
 r_1 \\
 r_2 \\
 r_3
\end{pmatrix}
\] (5)
のときオイラーアンは\[R = \arcsin (-2(r_2r_3 + r_0r_1)) \]（6）\[P = \begin{cases} \arctan 2 \left(\frac{r_1r_2 - r_0r_3}{\sqrt{r_2^2 - r_1^2}} \right) & (\cos R = 0) \\ \arctan 2 \left(\frac{r_3r_1 - r_0r_2}{\sqrt{r_2^2 - r_1^2}} \right) & (otherwise) \end{cases} \]（7）\[Y = \begin{cases} 0 \left(\cos R = 0 \right) \\ \arctan 2 \left(\frac{-r_1r_3 + r_0r_2}{\sqrt{r_2^2 - r_1^2}} \right) & (otherwise) \end{cases} \]（8）と表される。2)

5 問題設定

本研究では、Fig. 1 に示すロボットマニピュレータの4,5,6link を用いて手先姿勢

\[q = \begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} \]（9）
を目標手先姿勢

\[q_c = \begin{pmatrix} r_{0c} \\ r_{1c} \\ r_{2c} \\ r_{3c} \end{pmatrix} \]（10）に近づける問題を考える。

6 ロボットの手先姿勢

本章では、本研究でのロボットの手先姿勢を記す。

6.1 行列表現

まず、Fig. 1 のマニピュレータにおいて、4,5,6link を動かした場合の手先姿勢を行列形式で表す。Fig. 1 の4,5,6link における関節変位を \(\theta^T = (\theta_1, \theta_2, \theta_3) \) と定義すると、4,5,6link はそれぞれ \(y \) 軸、\(z \) 軸、\(y \) 軸を中心として回転するように軸が設定されている。ここで \(y \) 軸を軸として、原点を見たときに反時計回りの方向に \(\theta_n \) 回転させたときの回転行列 \(M_y \) をとると

\[M_y = \begin{pmatrix} C_{\theta_n} & 0 & S_{\theta_n} \\ 0 & 1 & 0 \\ -S_{\theta_n} & 0 & C_{\theta_n} \end{pmatrix} \]（11）と表せる。ただし、\(C_{\theta_n} = \cos \theta_n \)、\(S_{\theta_n} = \sin \theta_n \) とする。また、\(z \) 軸を中心として、原点を見たときに反時計回りの方向に \(\theta_n \) 回転させたときの回転行列 \(M_z \) をとると

\[M_z = \begin{pmatrix} C_{\theta_n} & S_{\theta_n} & 0 \\ -S_{\theta_n} & C_{\theta_n} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]（12）と表せる。

ここで第4,5,6link の回転行列をそれぞれ \(M_{y4} \)、\(M_{z5} \)、\(M_{y6} \) とすると姿勢行列 \(M \) は

\[M = M_{y4}M_{z5}M_{y6} \]

\[= \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \]（13）

\[m_{11} = C_{\theta_1}C_{\theta_2}C_{\theta_3} - S_{\theta_1}S_{\theta_3} \]
\[m_{12} = -S_{\theta_2}C_{\theta_1} \]
\[m_{13} = C_{\theta_1}C_{\theta_2}S_{\theta_3} + S_{\theta_1}C_{\theta_3} \]
\[m_{21} = S_{\theta_2}C_{\theta_1} \]
\[m_{22} = C_{\theta_2} \]
\[m_{23} = S_{\theta_2}S_{\theta_3} \]
\[m_{31} = -S_{\theta_1}C_{\theta_2}C_{\theta_3} - S_{\theta_3}C_{\theta_1} \]
\[m_{32} = S_{\theta_1}C_{\theta_2}S_{\theta_3} \]
\[m_{33} = -S_{\theta_1}C_{\theta_2}S_{\theta_3} + C_{\theta_1}C_{\theta_3} \]
となり、手先姿勢を行列形式で表せた。

6.2 四元数表現

次に四元数で手先姿勢を表す。

(4) 式に (14) 式の各パラメータの値を代入して

\[r_0 = \frac{\sqrt{f(\theta)}}{2} \]（15）\[r_1 = \frac{S_{\theta_2}S_{\theta_3} - S_{\theta_1}S_{\theta_2}}{2\sqrt{f(\theta)}} \]（16）\[r_2 = \frac{-S_{\theta_1}C_{\theta_2}C_{\theta_3} - S_{\theta_3}C_{\theta_1} - C_{\theta_1}C_{\theta_2}S_{\theta_3} - S_{\theta_1}C_{\theta_3}}{2\sqrt{f(\theta)}} \]（17）\[r_3 = \frac{-S_{\theta_2}C_{\theta_1} - S_{\theta_2}C_{\theta_3}}{2\sqrt{f(\theta)}} \]（18）
を得る。ただし
\[f(\theta) = C_{01}C_{02}C_{03} - S_{01}S_{03} + C_{02} - S_{01}C_{02}S_{03} + C_{01}C_{03} + 1 \quad (19) \]
とする。

7 制御則

7.1 提案法

マニピュレータの運動学の式を用いてロボットアームの手先姿勢制御を行う。

マニピュレータの運動学の式は
\[\dot{q} = B(q)B^T(q)J_q(\theta)\dot{\theta} \quad \text{(20)} \]
と表される。ここで入力は \(\dot{\theta} \) とする。ただし、\(J_q(\theta) \) は 3 × 4 行列で、方向のヤコビ行列を表し、

\[B(q) = \begin{pmatrix} -r_1 & -r_2 & -r_3 \\ r_0 & -r_3 & r_2 \\ r_3 & r_0 & r_1 \\ -r_2 & r_1 & r_0 \end{pmatrix} \quad \text{(21)} \]
とする。このとき

\[\dot{\theta} = J_q^T B B^T K q_c \quad \text{(22)} \]
の制御則を提案する。ただし

\[K = \text{diag}(k_1, k_2, k_3, k_4) \quad (k_1, k_2, k_3, k_4 > 0) \quad \text{(23)} \]
とする。ここで \(k_1, k_2, k_3, k_4 \) はゲインを表す。

命題 1 (22) 式の制御則により、(20) 式の安定性は保証される。

証明

(20) 式の運動学の式に対して、目標手先姿勢 (10) 式のときの Lyapunov 関数の候補

\[V = 2(1 - \eta) \quad \text{(24)} \]
を考える。\(^{4,5}\) ただし、手先姿勢の誤差 \(q_c \) は

\[q_c = \begin{pmatrix} r_{0c}r_0 + r_{1c}r_1 + r_{2c}r_2 + r_{3c}r_3 \\ -r_{1c}r_0 + r_{0c}r_1 + r_{3c}r_2 - r_{2c}r_3 \\ -r_{2c}r_0 - r_{1c}r_1 + r_{0c}r_2 + r_{1c}r_3 \\ -r_{3c}r_0 + r_{1c}r_1 - r_{1c}r_2 + r_{0c}r_3 \end{pmatrix} \quad \text{(25)} \]
とし、\(\eta \) は \(q_c \) の第 1 行成分を表す。

\[V = 2(1 - \eta) \quad \text{(26)} \]
\[\frac{1}{2} V = 1 - r_0r_{0c} - r_1r_{1c} - r_2r_{2c} - r_3r_{3c} \quad \text{(27)} \]
\[\frac{1}{2} \dot{V} = - \begin{pmatrix} r_{0c} & r_{1c} & r_{2c} & r_{3c} \end{pmatrix} \begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} \quad \text{(28)} \]
\[\frac{1}{2} \dot{V} = - \begin{pmatrix} r_{0c} & r_{1c} & r_{2c} & r_{3c} \end{pmatrix} \begin{pmatrix} \dot{r}_0 \\ \dot{r}_1 \\ \dot{r}_2 \\ \dot{r}_3 \end{pmatrix} = - \begin{pmatrix} r_{0c} & r_{1c} & r_{2c} & r_{3c} \end{pmatrix} \dot{q} \quad \text{(29)} \]
ここで式 (20) より

\[\frac{1}{2} \dot{V} = - \begin{pmatrix} r_{0c} & r_{1c} & r_{2c} & r_{3c} \end{pmatrix} BB^T J_q \dot{\theta} \quad \text{(30)} \]
より、入力を

\[\dot{\theta} = J_q^T B B^T K q_c \quad \text{(32)} \]
と選ぶと

\[\dot{V} \leq 0 \quad \text{(33)} \]
を満たす。よって安定性は保証された。

7.2 従来法

Lyapunov 関数の候補

\[V = \frac{1}{2} q_c^T K q_c \quad \text{(34)} \]
を選ぶ。\(^{5}\) ただし、手先姿勢の誤差 \(q_c \) は \(q_c = q_e - q \) で表される

\[K = \text{diag}(k_1, k_2, k_3, k_4) \quad (k_1, k_2, k_3, k_4 > 0) \quad \text{(35)} \]
とすると、ここで \(k_1, k_2, k_3, k_4 \) はゲインを表す。両辺を時間微分し整理する。

\[\dot{V} = \frac{1}{2} \dot{q}_c^T K \dot{q}_c + \frac{1}{2} \dot{q}_c^T J_q \dot{\theta} \quad \text{(36)} \]

\[= - \frac{1}{2} \dot{\theta}^T J_q^T A K \dot{q}_c - \frac{1}{2} \dot{q}_c^T J_q K \dot{\theta} \quad \text{(37)} \]
入力を

\[\dot{\theta} = - J_q^T B B^T K \dot{q}_c \quad \text{(38)} \]
と選ぶと

\[\dot{V} = - q_c^T K J_q J_q^T K \dot{q}_c \leq 0 \quad \text{(39)} \]
を満たす。

8 実験環境

実験は三菱重工業 PA-10 ロボットマニピュレータ Fig. 1 の 7 リンクのうち第 4, 5 リンクの 3 リンクを用いて行う。なお、運動制御以外の関節は電磁ブレーキをかけて固定するものとする。ロボットマニピュレータはサーボドライバーによって駆動され、サンプリングタイム約 2[msec] で PC と通信する。PC からサーボドライバーへはトルク指令を与える。マニピュレータの関節速度は分解能が約 0.9 × 10−5[rad] のアプソリュートエンコーダにより測定し、角速度は角度の差分により求められる。

9 実験

提案法、従来法の各ゲインを \((k_1, k_2, k_3, k_4) = (100, 100, 100, 100) \) とし、初期手先姿勢 \((R, P, Y) = (0^\circ, 0^\circ, 0^\circ) \) のとき実験結果をそれぞれ行行った。目標手先姿勢 \((R, P, Y) = (60^\circ, 60^\circ, 60^\circ), (15^\circ, 30^\circ, 60^\circ), (-15^\circ, -30^\circ, -60^\circ) \) のときのオイラー角関係を Fig. 2-5 に示す。さらにオイラー角の標準偏差と誤差平均を table.1-6 に示す。ただし Input 1, 2, 3 はそれぞれ \(\theta_1, \theta_2, \theta_3 \) とする。
10 考察

標準偏差、誤差平均ともに精度に大きな変化は見られなかった。

11 結論

本論文では、制御 Lyapunov 関数を用いたロボットマニュレータのフィードバック手先姿勢制御を行った。さらに従来法との精度を比較した結果、大きな変化は見られなかった。

参考文献

2) Fletcher Dunn Ian Parberry, 実例で学ぶゲーム 3D 数学,(2009).

4) Bong Wie, SPACE VEHICLE DYNAMICS AND CONTROL SECOND EDITION, pp.426/429,(2008).

Table 1: 60,60,60 標準偏差

<table>
<thead>
<tr>
<th></th>
<th>Roll [°]</th>
<th>Pitch [°]</th>
<th>Yaw [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>従来法</td>
<td>4.29×10^{-4}</td>
<td>1.60×10^{-4}</td>
<td>1.80×10^{-4}</td>
</tr>
<tr>
<td>提案法</td>
<td>5.16×10^{-4}</td>
<td>1.90×10^{-4}</td>
<td>2.20×10^{-4}</td>
</tr>
</tbody>
</table>

Table 2: 60,60,60 誤差平均

<table>
<thead>
<tr>
<th></th>
<th>Roll [°]</th>
<th>Pitch [°]</th>
<th>Yaw [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>従来法</td>
<td>7.21×10^{-4}</td>
<td>1.30×10^{-4}</td>
<td>1.5×10^{-4}</td>
</tr>
<tr>
<td>提案法</td>
<td>7.43×10^{-4}</td>
<td>1.50×10^{-4}</td>
<td>1.90×10^{-4}</td>
</tr>
<tr>
<td>Table 3: 15,30,60 標準偏差</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll[°]</td>
<td>Pitch[°]</td>
<td>Yaw[°]</td>
<td></td>
</tr>
<tr>
<td>従来法</td>
<td>6.24×10^{-4}</td>
<td>1.60×10^{-3}</td>
<td>5.98×10^{-4}</td>
</tr>
<tr>
<td>提案法</td>
<td>4.52×10^{-4}</td>
<td>1.20×10^{-3}</td>
<td>2.35×10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4: 15,30,60 誤差平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll[°]</td>
</tr>
<tr>
<td>従来法</td>
</tr>
<tr>
<td>提案法</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5: -15,-30,-60 標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll[°]</td>
</tr>
<tr>
<td>従来法</td>
</tr>
<tr>
<td>提案法</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6: -15,-30,-60 誤差平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll[°]</td>
</tr>
<tr>
<td>従来法</td>
</tr>
<tr>
<td>提案法</td>
</tr>
</tbody>
</table>