Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Rough Set Approach with Imperfect Data Based on Dempster-Shafer Theory
Do Van NguyenKoichi YamadaMuneyuki Unehara
Author information
JOURNAL OPEN ACCESS

2014 Volume 18 Issue 3 Pages 280-288

Details
Abstract

Original rough set theory deals with precise and complete data, even though real applications frequently contain imperfect information. Missing values are typical imperfect data studied in rough set research. Many ideas have been proposed in the literature to solve the issue of imperfect data, but hardly a single solution is sufficient for multiple types of imperfect data containing imprecision and uncertainty. The paper models some basic relations between objects with respect to an imperfect attribute value using the Dempster-Shafer theory of evidence, and defines uncertain relations between objects with multiple imperfect attribute values by combining basic relations defined in a single attribute. It also proposes new rough set models based on these basic relations and discusses the properties of these models.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top