肺癌手術における肺動静脈 3D-CT angiography の有用性

田中 俊樹*1, 市川 秀典*2, 古川 昭一*2, 濱野 公一*3

要 旨

2003年3月～7月までに当科で肺癌切除を行った原発性肺癌患者全11例を対象として、術前に肺動脈3D-CT angiography を行う肺動脈の分枝（区域動脈）を同定し、術中に実際の肺動脈の分枝と比較してその有用性を検討した。対象患者全員に医療負担（約740円）・追加被曝線量（12～17mGy）について十分な説明を行い、同意を得た。結果、検討した全分枝の同定率（3D-CTでの分枝同定数／手術時の分枝同定数）は98.5％であった。左右肺動脈では、右側100％、左側97.1％であった。同定不可能であった分枝は太さが約1.5mmで、肺静脈との区別が難しい症例であった。肺癌手術における肺動脈3D-CT angiography は、術前に肺動脈の分枝をはっきり同定できるため、肺動脈分枝の形態把握に有用であった。

索引用語：肺癌、3D-CT lung cancer, 3D-CT angiography

背景

肺動脈の分枝・走行には多くの variation があり、肺動脈の処理を安全かつ確実に行うことが、すなわち肺切除術を安全に行うための重要な因子である。特に最近は胸部鏡下手術の普及に伴い、肺癌に対する肺切除・リンパ節郭清を含む閉胸・胸部鏡下補助下に行われる機会が増え、肺動脈の安全な処理がより要求されるようになってきている。

今回我々は、術前に肺動脈の variation を立体的に把握する試みとして肺動脈3D-CT angiographyを行い、その有用性を検討したので報告する。

対象と方法

2003年3月～7月までに当科で肺癌切除を行った原発性肺癌患者全11例を対象とした。対象患者全員に、施行目的とその有用性、また被曝線量と医療費負担について十分な説明を行い、全員から同意を得た。方法は、術前に肺動脈3D-CT angiography を行い予定肺葉切除に関与する肺区域動脈の分枝を同定し、術中に実際に肺動脈の分枝を同定して、その同定率（3D-CTでの分枝同定数／手術時の分枝同定数）を求め比較検討した。評価対象とした区域動脈の分枝は、術中の剝離操作によって確認出来る分枝とした（Table1）。また被曝線量、コストについて、これまでに行っていった術前の胸部単純・造影CTと比較検討した。

撮影条件

CT は Aquilion multi 4DAS（東芝メディカル、東京）を使用した。撮影条件は120kv・300mA・0.5sec・HP 5.5・スライス幅1mm×4にて行った。使用造影剤は非イオン性造影剤（300mg/ml）を総量80ml 使用した。造影剤注入口後13秒後より撮影を開始し、呼吸停止時間は約18秒であった。画像処理は VITREA2 version3.1（Vital Images Inc. USA）を用いて 3D 画像の構築を行った。

結果

今回検討した肺動脈分枝総数は66本（右31本、左35本）であった。肺動脈の分枝同定率は98.5％（65/66）
Table 1 The branches of pulmonary artery which compared with intraoperative findings with distinction of the resected lobe.

<table>
<thead>
<tr>
<th>Resected lobe</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>$A^1 \cdot A^2 \cdot A^3 \cdot A^4 \cdot A^5 \cdot A^6$</td>
<td>$A^{1+2} \cdot A^3 \cdot A^4 \cdot A^5 \cdot A^6 \cdot A^7 \cdot A^8 \cdot A^9 \cdot A^{10}$</td>
</tr>
<tr>
<td>Middle</td>
<td>$A^2 \cdot A^4 \cdot A^5 \cdot A^6 \cdot (A^7) \cdot A^8 \cdot (A^9 \cdot A^{10})$</td>
<td>$(A^{1+2}) \cdot A^4 \cdot A^5 \cdot A^6 \cdot A^7 \cdot A^8 \cdot A^9 \cdot A^{10}$</td>
</tr>
<tr>
<td>Lower</td>
<td>$A^2 \cdot A^4 \cdot A^5 \cdot A^6 \cdot A^7 \cdot A^8 \cdot A^9 \cdot A^{10}$</td>
<td>$(A^{1+2}) \cdot A^4 \cdot A^5 \cdot A^6 \cdot A^7 \cdot A^8 \cdot A^9 \cdot A^{10}$</td>
</tr>
</tbody>
</table>

Fig. 1 Three-dimensional computed tomography pulmonary angiography image (3D-CTPAI) of the left pulmonary artery.

Fig. 1A/1B The lingular arteries (A^{1+2}) which branched off A^2 was detected in the image before thoracotomy (arrows).

Fig. 2 3D-CTPAI showed the common left pulmonary vein which branched from the left atrium before thoracotomy (arrow).
考察

肺葉切除術を安全に行うための重要な因子は術前にかつ安全な血管処理である。近年の胸腔鏡下手術の普及に伴い、新発性肺結に対する術後切除による問題が顕著な小腸胸腔鏡手術手術の成長が進んでいる。特に、肺動脈の安全な処理がより重要と考えられるようになった。設計、肺動脈の分枝、走行には多くのvariationがあり、過去の炎症性肺疾患などの合併症の有無により高度の術後の症例や不完全分離の強さの症例では、標準的胸腔鏡手術でも肺動脈分枝の合併処理の難易度が高く、合併症の危険性も高いと考えられる。また脳神経外科領域や心血管領域での3D-CTangiographyの有用性がnavigation surgeryへの応用を含め報告されている。

これらの状況をふまえ、術前に肺動脈の分枝形状を把握することにより、安全な血管断離・処理を行う上で重要となると考え、肺動脈の形を把握する試みとして肺動脈3D-CTangiographyを行った。

結果は、肺動脈分枝の同定率は非常に高く、また3次元構築されることにより術前に立体的把握も行えたことから術後の血管処理を安全に行うことが可能であった。実際の手術においても肺動脈の損傷や出血等の合併症はなく、特に高度再生症例やVATS肺葉切除症例では非常に有用であった。また、術前に唯一同定不能であった症例もretrospectiveに検討すると分枝は描出されており、術後に通常の新しい造影と比べて、本法の利点は言うまでもなく画像を任意の方向に360度回転できることがある。このため特に深く検討すれば分枝同定することが可能と考えられるが、実際には肺動脈の分枝状態が不明ない場合でも存在するため、肺動脈同定に難済する場合もあると考えられた。

撮像に関しては、撮像の軸を負担の目的で、撮像開始後から撮影開始までの時間を一旦にした。これにより撮影開始までCTモニタリングが必要なく、3D-CTangiographyでの撮像線量は、通常の胸部CT機回分の線量で行った。また照射負担も748円であり、撮像・コントロールともに許容範囲内と考えられた。

本論における問題点は、①肺動脈の分離が困難であること、②腫瘍・リンパ節が肺動脈に浸潤しているかどうかの評価が困難であることが挙げられる。③に関しては、近年のCT造影の進歩は著しく、高速multi-detector row spiral computed tomography（MDCT）を用いれば肺動脈の分離、染め分けが可能となると考えられる。本論文で提示したような細い部位で肺動脈との区別が難しい症例では、肺動脈の分離ができれば容易に肺動脈の分枝であることが同定できると考えられる。また、肺動脈の分離によりで血行凝固や責任血管が同定しやすく、肺動脈の血管を高にして区域切除などの切除範囲を決定することなど、今後の発展の余地は十分にあると考えられる。②に関しても高速MDCTの導入により、より細かい検出が可能となることから、肺血管に対する腫瘍浸潤の新たな評価基礎も確立される可能性があり、今後の研究課題であると考える。

結語

肺癌手術における肺動脈3D-CTangiographyは術前に肺動脈の分枝をはっきり同定できるため、肺動脈分枝の形態把握に有用であった。

稿を終えるにあたり、3D-CTの画像構成、診断、撮影条件に関して指導頂きました済生会生田総合病院放射線科中村洋先生に深謝致します。

文献

The usefulness of pre-operative three-dimensional computed
tomographic pulmonary angiography for anatomical
resections of primary lung cancer

Toshiki Tanaka*1*3, Hidenori Gokra*2, Syoichi Furukawa*2, Kimikazu Hamano*3

*1Department of Surgery, Hikari General Hospital, Yamaguchi, Japan
*2Department of Surgery, Saiseikai Yamaguchi General Hospital, Yamaguchi, Japan
*3First Department of Surgery, Yamaguchi University School of Medicine, Yamaguchi, Japan

Three-dimensional computed tomographic pulmonary angiography (3D-CTPA) was performed in 11 patients with primary lung cancer who were scheduled for anatomical pulmonary resection. The 3D-CTPA images were obtained by the multidetector row spiral computed tomography (MDCT) technique. Images of the branching pattern of the pulmonary artery (PA) were compared with intraoperative findings in each case. All branches of the right PA (31 of 31) and 97% of the left branches (34 of 35) were visualized on the pre-operative 3D-CTPA images. One branch that was not detected on the 3D-CTPA images was a small vessel, and it was difficult to distinguish between the PA and the pulmonary vein. No intraoperative bleeding or pulmonary vessel injury occurred. Thus, pre-operative 3D-CTPA by means of MDCT is very useful for ensuring a safe surgical procedure in anatomical pulmonary resection.