On Numerations of a Formal System

Hidehisa Sakai
Tokyo Metropolitan University

The results presented here are extensions of S. Feferman; Arithmetization of Metamathematics in a General Setting. Fund. Math. 49 (1960), 35–92.

As to the notations we shall follow him.†

Proposition A

Let $\mathcal{A} = \langle A, K \rangle \supseteq \mathcal{F}$ be a consistent axiom system which is binumerable (resp. numerable) in \mathcal{A}.

There is a formula $R(x)$ of K_0 such that

$$\vdash \mathcal{A} \models R(\bar{n})$$

for every natural number n and

$$\vdash \mathcal{A} \models \forall x R(x)$$

if and only if there is an a^* which binumerates (resp. numerates) A in \mathcal{A} and

$$\vdash \mathcal{A} \models \text{Con}_{a^*}.$$

Proof

If-part: Since a^* numerates A, we have

$$\vdash \mathcal{A} \models \text{Prf}_{a^*}(\bar{\phi}_0 \land \neg \bar{\phi}_0, \bar{n})$$

for every n.

And $\vdash \mathcal{A} \models \text{Prf}_{a^*}(\bar{\phi}_0 \land \neg \bar{\phi}_0, x)$ means that \mathcal{A} is ω-inconsistent.

† $\langle A, K \rangle$ represents an axiom system with a set of non-logical axioms A and with a language K.

\mathcal{F} is the Peano's arithmetic with the language K_0. \mathcal{A} is a particular extension of \mathcal{F}, which can intensionally binumerate all recursive functions and predicates which appear in our propositions.

\bar{n} is the numeral corresponding to a natural number n. Let E be a Gödelized metamathematical expression. Then E denotes its binumeration in \mathcal{A}.

$E^1(\xi)$ is an expression in \mathcal{F} which corresponds to an expression E in \mathcal{A} and which has roughly the same effect in \mathcal{F} as E has in \mathcal{A}. $\text{Prf}_{\mathcal{A}}(x, y)$ is a numeric expression of "y is a proof of x in an axiom system $\mathcal{A} = \langle A, K \rangle$". $\text{Prf}_{\mathcal{A}}(x, y)$ is defined by $\forall y \text{Prf}_{\mathcal{A}}(x, y)$.

If a numerates A, then, roughly speaking, $\text{Prf}_{a}(x, y)$ is a formula numerating $\text{Prf}_{\mathcal{A}}(x, y)$ in a natural way in \mathcal{F}. $\text{Prf}_{a}(x)$ is defined by $\forall y \text{Prf}_{a}(x, y)$.

Let $\bar{\chi}$ be a Gödel-number of a contradiction. Con_{a} is defined by $\vdash \text{Prf}_{a}(\bar{\chi})$.

Fm_{K}, Vr and v_{xy} are the numeric expressions for the set of formulas in K, the set of variables and the y-th variable respectively.

— 227 —
Clearly, \(\text{Prf}_{a^*}(\tilde{\phi}_0 \land \neg \tilde{\phi}_0, x) \) is a formula of \(K_0 \).

Only if-part: Let \(a \) be an arbitrary binumeration (resp. numeration) of \(A \) in \(\mathcal{A} \). Put

\[
a^*(x) = a(x) \lor \forall y [x \approx \neg \land \lor y \approx \lor y \land R(y)].
\]

Moreover we put the numeral corresponding to \(\neg \land \lor y \approx \lor y \) to be \(\bot_y \).

We show, at first, that \(a^* \) binumerates (resp. numerates) \(A \) in \(\mathcal{A} \).

Lemma 1. For every \(n \)

\[
\vdash_{\mathcal{A}} (\tilde{n} \approx \bot_y)^{(\mathcal{A})} \to y \leq \tilde{n}.
\]

Lemma 2. For every \(n \)

\[
\vdash_{\mathcal{A}} \forall y [y \leq \tilde{n} \to R(y)].
\]

1. \(\vdash_{\mathcal{A}} \forall y [(\tilde{n} \approx \bot_y)^{(\mathcal{A})} \land R(y)] \) \text{ for every } \(n \) \text{ lemma 1, 2}

2. \(\vdash_{\mathcal{A}} a^*(\tilde{n}) \to a(\tilde{n}) \) \text{ for every } \(n \)

3. \(\vdash_{\mathcal{A}} a^*(\tilde{n}) \leftrightarrow a(\tilde{n}) \) \text{ for every } \(n \)

Therefore we have \(a^* \) binumerating (resp. numerating) \(A \) in \(\mathcal{A} \).

Now we prove \(\vdash_{\mathcal{A}} \sim \text{Con}_{a^*} \).

We put

\(\mathcal{A}' = \langle \text{Prf}_{a^*} \cap \text{Fm}_{K_0}, K_0 \rangle \).

4. \(\vdash_{\mathcal{A'}} \forall u (\text{Prf}(u) \approx \text{Prf}(u)) \)

5. \(\vdash_{\mathcal{A'}} \forall v (\text{Prf}(v)) \)

6. \(\vdash_{\mathcal{A'}} \text{Fm}_K (\bot) \)

7. \(\vdash_{\mathcal{A'}} \forall y \text{Prf}(\sim \bot_y) \)

8. \(\vdash_{\mathcal{A'}} \forall y \text{Prf}(\bot_y \to \bot_y) \)

9. \(\vdash_{\mathcal{A'}} \text{Prf}(x) \land \text{Prf}(x \to y) \to \text{Prf}(y) \)

10. \(\vdash_{\mathcal{A'}} \forall y [\text{Prf}(\bot_y) \to \text{Prf}(\bot_y)] \)

11. \(\vdash_{\mathcal{A'}} \forall y [x \approx \bot_y \land R(y)] \)

12. \(\vdash_{\mathcal{A'}} \forall y [\forall (x \approx \bot_y \land R(y)) \land \forall (x \approx \bot_y)] \)

13. \(\vdash_{\mathcal{A'}} \forall y [a^*(x) \land x \approx \bot_y] \)
Let $A = \langle A, K \rangle$ be ω-consistent with $A \supseteq \mathcal{P}$ and let $\mathcal{P} \subseteq \zeta \subseteq A$. Then, A is finite if and only if there is a PR (resp. RE) numeration a_0 of A in ζ such that for every PR (resp. RE) numeration a_1 of A in ζ

$$\vdash_{A} \forall x [a_0(x) \rightarrow a_1(x)]$$

holds.

Proof

Only if-part: Let A be

$$(k_1, k_2, \ldots, k_n).$$

Then $x \equiv k_1 \lor x \equiv k_2 \lor \cdots \lor x \equiv k_n$ is the desired $a_0(x)$.

If-part: Suppose A is infinite. Then, for any natural number n and for any PR (resp. RE) numeration a of A in ζ

1. $\vdash_{\zeta} \forall \gamma [\bar{a} \leq y \land a(y)].$

From the ω-consistency of \mathcal{A} and 1 we have

2. $\vdash_{\zeta} \forall \gamma [x \leq y \rightarrow \neg a(y)].$

Therefore for every PR (resp. RE) numeration a of A in ζ

3. $\mathcal{A} = \mathcal{A} \cup \{ \forall \gamma [x \leq y \land a(y)] \}$ is consistent.

Now define

$$\text{Prf}_a(x, y) = \lor_w [w \leq y \land \text{Prf}_a(x, w)]$$

And put

$$a_1(x) = a_0(x) \land \neg \text{Prf}_a(\bot, x),$$

where \bot means $\bot \vDash$ in the proof of the proposition A. Since for every number n
4. \(\vdash_S \sim \Prf_{\mathcal{A}_0}(\perp, \overline{\mathcal{A}}) \),

\(a_j \) is PR (resp. RE) formula numerating \(A \) in \(\mathcal{A} \).

5. \(\vdash \mathcal{A} \Prf_{\mathcal{A}_0}(\perp, x) \to \bigwedge_y [x \leq y \to \Prf_{\mathcal{A}_0}(\perp, y)] \)

6. \(\vdash \mathcal{A} \Prf_{\mathcal{A}_0}(\perp, x) \to \bigwedge_y [x \leq y \to \sim a_j(y)] \)

7. \(\vdash \mathcal{A}_0 \Prf_{\mathcal{A}_0}(\perp, x) \to \bigvee_z [x \leq z \land a_0(z)] \)

8. \(\vdash \mathcal{A}_0 \Prf_{\mathcal{A}_0}(\perp, x) \to \bigvee_z [a_0(z) \land \sim a_1(z)] \)

9. \(\vdash \mathcal{A}_0 \bigvee_x \Prf_{\mathcal{A}_0}(\perp, x) \to \bigvee_z [a_0(z) \land \sim a_1(z)] \)

10. \(\vdash \mathcal{A}_0 \bigwedge_x [a_0(z) \to a_j(z)] \to \bigwedge_x \sim \Prf_{\mathcal{A}_0}(\perp, x) \)

Let \(\alpha^*(x) \) be

\[a_0(x) \lor x \equiv \bigwedge_z \bigvee_y [x \leq y \land a_0(y)]. \]

Clearly \(\alpha^* \) is a PR (resp. RE) numeration of

\[A \cup [\bigwedge_z \bigvee_y (x \leq y \land a_0(y))] \]

in \(\mathcal{A} \). We can moreover formulate the relative consistency of \(\mathcal{A}_0 \) (i.e. the discussion leading to 3) in \(\mathcal{A} \). That is,

11. \(\vdash \mathcal{A} \Con_{\mathcal{A}_0} \to \Con_{\alpha^*} \)

12. \(\vdash \mathcal{A}_0 \bigwedge_x [a_0(x) \to a_j(x)] \to \Con_{\alpha^*} \)

13. \(\vdash \mathcal{A}_0 \Con_{\alpha^*} \)

Gödel’s second incompleteness theorem

14. \(\vdash \mathcal{A}_0 \bigwedge_x [a_0(x) \to a_j(x)] \)

15. \(\vdash \mathcal{A}_0 \bigwedge_x [a_0(x) \to a_j(x)] \)

This completes the proof of if-part.

Q.E.D.