Erratum

Accumulation of Cello-oligosaccharides during Bacterial Cellulose Production by

Acetobacter xylinum

Fuyu Ito,1 Yoshihiko Amano,1,* Masahiro Shiroishi,2 Kouichi Nozaki,1 Inder M. Saxena,3 Malcolm R. Brown Jr.3 and Takahisa Kanda1

1Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
(4-17-1, Wakasato, Nagano 380-8553, Japan)
2Agricultural Technology Institute of Nagano Farmer’s Federation
(787-1, Suzaka, Suzaka 382-0084, Japan)
3School of Biological Science, the University of Texas at Austin
(Austin, Texas 78712, USA)

*Corresponding author.

The authors apologize for the mistakes in abstract and text on page 27 of volume 52 (1), 2005. The abstract on page 27 should be as follows.

Acetobacter xylinum ATCC23769 produces not only cellulose but also various oligosaccharides during cell growth. These oligosaccharides were accumulated and increased gradually up to about half amounts of cellulose with the increase of endo-1,4-β-glucanase activity in culture broth. These oligosaccharides were identified cello-oligosaccharides, gentiobiose, rhamnose and mannose, which were constituent sugars of acetan. It is suggested that they are the degradation products from acetan, as enzymes prepared from culture broth hydrolyzed acetan rather than cellulose.

The third paragraph of text on page 27 should be as follows.

First, the sugars produced in the Hestrin and Schramm (SH) medium during the static culture of A. xylinum ATCC23769 have been analyzed. Changes in the amounts of cello-oligosaccharides, acetan, cellulose, endo-1,4-β-glucanase activity in culture solution and cell growth during the culture are shown in Fig. 1. In the static culture, cell mass did not increase linearly but showed as the shape of stair. The products such as cellulose, cello-oligosaccharide and endo-1,4-β-glucanase also increased as the same pattern. It seems that cell division and the matter production occurred in turn, and consequently cellulose produced was composed of the thick of individual sheet. Various cello-oligosaccharides and endo-1,4-β-glucanase were produced after one day’s culture and increased gradually. Cellulose production showed the same tendency as cello-oligosaccharides and endo-1,4-β-glucanase productions, and was related closely. During the culture A. xylinum produced 0.2 mg of cello-oligosaccharides as the total amount after one day and finally over 1.5 mg/mL of them at 2 weeks. It is interesting that cellulose, cellulose degrading enzyme and cello-oligosaccharides, which might be produced from cellulose by enzyme degradation, were closely related to each other.