Regular Paper

Effects of Phosphoryl Oligosaccharides of Calcium (POs-Ca) on Epidermal Cells and Human Skin

(Received January 20, 2015; Accepted April 20, 2015)
(J-STAGE Advance Published Date: April 30, 2015)

Haruyo Sambe, Kazuhisa Sugimoto, Koji Nomura, and Takashi Kuriki

1Institute of Health Sciences, Ezaki Glico Co., Ltd. (4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan)

Abstract: Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca has high solubility in water and it can supply both calcium ion and acidic oligosaccharides in an aqueous medium. In this study, we evaluated effects of POs-Ca on cultured normal human epidermal keratinocytes (NHEK) and human skin. Several in vitro studies using cultured NHEK demonstrated that POs-Ca promoted NHEK differentiation, tight junction formation, intercellular lipid production, and gene expression involved in stratum corneum condition, skin barrier function and hydration. Skin penetration study using a three-dimensional epidermal model demonstrated that POs-Ca was able to provide both calcium ion and phosphoryl oligosaccharides to the epidermis. Furthermore, an in vivo study demonstrated that POs-Ca improved human skin conditions including hydration, barrier function, stratum corneum condition, and skin texture. These results suggest that POs-Ca can be a superior active agent for healthy epidermis.

Key words: phosphoryl oligosaccharides of calcium, calcium carrier, keratinocyte differentiation, tight junction, skin barrier, intercellular lipid

INTRODUCTION

Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl oligosaccharides prepared from potato starch. POs-Ca has high solubility in water and it can supply both calcium ion and phosphoryl oligosaccharides to the epidermis. POs-Ca contains calcium approximately 5%. Generally, calcium phosphate has low solubility in water. However, POs-Ca has high solubility in water because it contains oligosaccharides that have extremely-high water solubility. Previous studies have demonstrated that POs-Ca has various functions such as mineral supplementation, and remineralization and recrystallization of tooth enamel lesions. Particularly, POs-Ca has already been put to practical use in chewing gum for prevention of dental caries.

We expect further application of POs-Ca as a superior water-soluble calcium compound. Calcium ion in the epidermis has key roles in the epidermal barrier homeostasis and repair such as terminal differentiation, formation of the cornified envelope, epidermal lipid synthesis and tight junction formation. The epidermis displays a characteristic calcium distribution so-called “epidermal calcium gradient”, with high calcium levels in the outer stratum granulosum, tapering to very low levels in both the lower epidermis and stratum corneum (SC). The epidermal calcium gradient is associated with epidermal differentiation and barrier homeostasis, and it becomes broad with aging. Thus, calcium ion and its distribution in the epidermis are important for the epidermal function. Another interesting point is that phosphoryl oligosaccharides are anionic oligosaccharides. It has been reported that an external negative electric potential affects the epidermal ion gradient and accelerates skin barrier recovery after barrier disruption, and that anionic polymers accelerate the damaged skin barrier recovery. Moreover, a negative electric potential affects epidermal calcium distribution even in normal human skin.

POs-Ca can supply both calcium ion and anionic oligosaccharides in an aqueous medium. Therefore, we expect that POs-Ca will provide not only the calcium function in the epidermis but also negative electric potential on the skin surface, and POs-Ca will be useful for skin care. In this study, we evaluate the effects of POs-Ca on cultured epidermal keratinocytes and human skin.

MATERIALS AND METHODS

Materials. POs-Ca of cosmetic grade (Glico Nutrition Co., Ltd., Osaka, Japan) was used for all experiments. It contained phosphoryl maltotriose, phosphoryl maltotetraose, and phosphoryl maltopentaose as a major phosphoryl maltooligosaccharide, and 5.3% calcium. Analytical grade solvents and reagents were used for chromatography. Other reagents and materials were described in each experiment.

Cell culture. Normal human epidermal keratinocytes
(NHEK) were purchased from Kurabo Industries Ltd. (Osaka, Japan). NHEK were cultured in Gibco EpLife medium with 0.06 mM calcium (Life Technologies Corporation, Carlsbad, USA) supplemented cell growth agents, KK-6150 (Kurabo) at 37°C in a humidified atmosphere of 5% CO₂ and 95% air. At approximately 80% confluence, the cells were collected with trypsin, EDTA and HEPES buffer (Kurabo), and used in all experiments.

Morphological observation of NHEK. NHEK were seeded in a 96-well microculture plate at 1 × 10⁴ cells/well and cultured for 24 h. The cultured medium was replaced by 200 µL of fresh one containing 0.05% POs-Ca, and the cells were cultured for 48 h. The morphology was observed under an inverted phase contrast light microscope.

Western blot analysis of involucrin in NHEK. NHEK were seeded in a 12-well microculture plate at 7 × 10⁴ cells/well and cultured for 48 h. The cultured medium was replaced by 1 mL of fresh one containing 0.1% POs-Ca, and the cells were cultured for 144 h. Protein lysate of the cells was prepared using a cell disruption buffer of Ambion PARIS kit (Life Technologies). Protein concentration was determined with RC/DC Protein Assay (Bio-Rad Laboratories, Inc., Hercules, USA). Equal amounts of protein (1 µg) were separated by SDS-PAGE and transferred to nitrocellulose membrane and western blotting was performed for involucrin and glyceraldehydes-3-phosphate dehydrogenase (GAPDH) using ONE-HOUR Western Multiplex Kit I (GeneScript Inc., Piscataway, USA). Lab Vision anti-Involucrin Ab-1 (Thermo Fisher Scientific Inc., Waltham, USA) was used for primary antibody. GAPDH was used as an internal control. Densitometric analysis was performed using LAS-4000 UVmini (Fujifilm Corporation, Tokyo, Japan) and Multi Gauge version 3.0 (Fujifilm).

Measurements of transepithelial electric resistance. Tight junction forming ability was evaluated by measuring the transepithelial electric resistance (TER). TER was measured by a previously described method21) using a Millicell-ERS epithelial volt ohmmeter (Millipore Corporation, Bedford, Western MA). NHEK were seeded onto Transwells (Millipore) of 0.4 µm pore size at 4 × 10⁴ cells/well and cultured for 144 h. The cultured medium was replaced by 0.9%土 of 2% POs-Ca dissolved in 10 mM Tris buffer (pH 7.0) and cultured for 48 h. The morphology was observed under an inverted phase contrast light microscope.

Immunofluorescence microscopy. NHEK were seeded onto Transwells of 0.4 µm pore size at 4 × 10⁴ cells/well and cultured for 24 h. The culture medium was replaced by fresh one containing 0.1% POs-Ca, and then the cells were cultured for 144 h. The cultured NHEK were fixed by 10% formalin, incubated with the primary antibodies, anti-claudin 1 antibody, anti-claudin 4 antibody and anti-occludin antibody, and thereafter incubated with fluorescent-conjugated secondary antibodies. The primary and secondary antibodies were purchased from Abcam plc. (Cambridge, UK). The images were obtained using a confocal laser scanning microscope.

RNA isolation and quantitative real-time PCR. NHEK were seeded in a 12-well microculture plate at 7 × 10⁴ cells/well and cultured for 48 h. The culture medium was replaced by fresh one containing 0.1% POs-Ca, and then the cells were cultured for 0, 3, 12, and 24 h. Total RNA was isolated from the cells using RNeasy Mini Kit (Qiagen Inc., Valencia, USA) and cDNA was synthesized using Applied Biosystems High Capacity cDNA Reverse Transcription Kit (Life Technologies). Quantitative real-time PCR was performed on Applied Biosystems 7500 Fast Real-Time PCR System (Life Technologies) with gene-specific primer sets for occludin (OCDN), claudin 1 (CLDN1), claudin 4 (CLDN4), involucrin (IVL), transglutaminase 1 (TGM1), keratin 1 (KRT1), profilaggrin (FLG), and hyaluronan synthase 3 (HAS3), and Applied Biosystems Power SYBR Green PCR Master Mix (Life Technologies). Transcript levels were normalized to peptidylprolyn isomerase A (PPIA) gene. The primers were designed using Applied Biosystems Primer Express Software Version 3.0 (Life Technologies) and were synthesized by Sigma-Aldrich Corp. (St. Louis, USA). The primer sequences are as follows: PPIA-forward, 5’-CTGGGTCCAGAATGG-3’; PPIA-reverse, 5’-GTTGTCCA CAGTCAGCATAATG-3’; ODN-forward, 5’-GCAAGAA GGTCGAAAGAGCAGA-3’; ODN-reverse, 5’-GGACT CGCCGCCAGTTG-3’; CLDN1-forward, 5’-CTGGGAGG TGCCCCTACTTTG-3’; CLDN1-reverse, 5’-CCTTGGTTGTG GTGAAGGGTTGTG-3’; CLDN4-forward, 5’-GCTGGGCA GGATAGCTTACCC-3’; CLDN4-reverse, 5’-GCCAAGCG TGATGCA-3’; IVL-forward, 5’-CCACTGGCTCCTACTTA TTTCG-3’; IVL-reverse, 5’-GGACAGACTCAATTGTCAGT AGATGAG-3’; TGM1-forward, 5’-GACCGAGAAGCGCAGT AGAGACA-3’; TGM1-reverse, 5’-CCCCGTTGGCTCAC TACACA-3’; KRT1-forward, 5’-CCAGGAGTCTAGATGAC CA-3’; KRT1-reverse, 5’-GAGGGTCTCTTGAGTGGCGA AT-3’; FLG-forward, 5’-GGCAGCTTGAAGCAGAAAAAGG-3’; FLG-reverse, 5’-AAAACCCGATTCACCATAATC-3’; HAS3-forward, 5’-GCCTATGGTACGCGCCTAC-3’; HAS3-reverse, 5’-ACAGCCCGAAGGACGATG-3’.

PCR conditions are as follows: 95°C for 10 min, 40 cycles of 95°C for 1 s, 55°C for 10 s, and 72°C for 10 s. A dissociation stage was added after the PCR reaction to generate a melting curve for verification of amplification product specificity.

Analysis of intercellular lipid. NHEK were seeded in a 6-well microculture plate at 2 × 10⁵ cells/well and cultured for 72 h. The culture medium was replaced by fresh one containing 0.1% POs-Ca, and then the cells were cultured for 144 h. Intercellular lipid in the NHEK was extracted using Bligh-Dyer method22) Separation of the extracted lipids was carried out by high-performance thin-layer chromatography (HPTLC) using a Silica Gel 60 HPTLC plate (Merck KGaA, Darmstadt, Germany) as previously reported.23) After visualizing the spots in the HPTLC plate, the amounts of ceramides and cholesterol were quantitatively determined using LAS-4000 UVmini and Multi Gauge version 3.0. Standards of ceramide II, ceramide III, and ceramide VI were provided from Nikko Chemicals Co., Ltd. (Tokyo, Japan).

Skin penetration study. Three-dimensional cultured human epidermal model with advanced barrier function, EpiDerm EPI-200-X (MatTek Corporation, Ashland, USA), was set to the fixture, EPI-100-FIX (MatTek), and put in a 6-well plate added 5 mL of aqueous solution of 10 mM Tris buffer (pH 7.0)–0.9% NaCl as a receiver solution. Aqueous solution of 2% POs-Ca dissolved in 10 mM Tris buffer (pH 7.0)–0.9% NaCl was used as a donor solution. Donor solution (100 µL) was added onto the SC of the epidermal model. After 24-hour incubation at 37°C, the receiver solution and epidermal
The test was carried out from January to March in order to evaluate the effect of POs-Ca on NHEK and human skin. SC condition was evaluated by imaging analysis of tape-stripped SC cells. SC hydration, trans-epidermal water loss (TEWL), and skin texture were measured before the application and after a 4- and 8-week application. SC hydration and TEWL were measured with the VapoMeter SWL-4001TJ (Delfin Technology Oy, Kuopio, Finland), respectively. SC condition was evaluated by imaging analysis of silicone skin replica. The test was carried out from January to March in Japan. Pollen allergy sufferers were excluded at the selection stage of subjects. All subjects were asked to follow three things: i) do not shave measurement site on face, ii) do not change basic cosmetics, iii) do not lead an irregular life. This study was conducted in accordance with Declaration of Helsinki, and was approved by Shiba Palace Clinic institutional review board (Tokyo, Japan).

Statistical analysis. Results are expressed as mean ± SD or mean ± SE. Statistical significance was determined by Welch’s t test or Dunnett’s multiple comparison test.

RESULTS AND DISCUSSION

Effect of POs-Ca on NHEK differentiation.

We examined the effects of POs-Ca on morphological property of NHEK and cell differentiation. In NHEK cultured in the presence of 0.05% POs-Ca, flattening and stratification of cells, which are characteristics of differentiated keratinocytes, were observed (Fig. S1; see J. Appl. Glycosci. Web site). Figure 1 shows the production of involucrin protein in cultured NHEK. We confirmed that calcium of POs-Ca effectively acted on NHEK.

Effect of POs-Ca on tight junction formation of NHEK.

Tight junction is one of the intercellular junctions and forms a diffusion barrier that prevents the passage of molecules and ions through the space between cells. Tight junction in the epidermis is known to play an important role in maintaining the epidermal barrier function. Calcium is deeply involved in tight junction formation.

We examined the effect of POs-Ca on tight junction formation of NHEK. The degree of the sealing of tight junction was evaluated by measuring TER. TER of a keratinocyte sheet reflects the transepithelial permeability of water-soluble ions, and a higher TER indicates a lower ionic permeability. As shown in Fig. 2, POs-Ca markedly increased TER in a concentration-dependent manner. Next, immunostaining of tight junction proteins, occludin, and claudins, was performed using NHEK cultured with and without POs-Ca, respectively. Continuous and honeycomb localization of the tight junction proteins at cell borders, which is a typical image of tight junction formation, were observed only in POs-Ca treated cells (Fig. S2; see J. Appl. Glycosci. Web site). Furthermore, the gene expression of occludin and claudins was examined. As shown in Fig. 3, the expression levels of those genes were significantly increased by the treatment with 0.1% POs-Ca.

These results suggest that POs-Ca promotes tight junction formation of NHEK and that the promoting effect is...
controlled by transcriptional regulation and functional localization of tight junction related molecules.

Effect of POs-Ca on intercellular lipid production in NHEK.

Intercellular lipid is essential for SC barrier on the outermost layer of epidermis, and contains ceramides, cholesterol, and fatty acids as major components.

We examined the effect of POs-Ca on the production of intercellular lipid in cultured NHEK. Figure 4 shows the production of cholesterol and ceramides in POs-Ca treated and untreated groups. Cholesterol, ceramide II, and ceramide VI were significantly increased by the treatment of 0.1% POs-Ca. The spots of ceramide III in both groups were too weak to quantify. With the visual observation of the HPTLC plates, a small amount of ceramide III was detected in POs-Ca treated group, whereas no ceramide III was detected in the untreated group. These results suggest that POs-Ca promotes the production of intercellular lipid in cultured NHEK, and can be expected to enhance SC barrier.

Effect of POs-Ca on gene expression related to SC condition, barrier function and skin hydration in NHEK.

We examined the effect of POs-Ca on the expression of various genes involved in SC condition, barrier function and skin hydration (IVL, TGM1, KRT1, FLG, HAS3). As shown in Fig. 5, the expression levels of these genes were significantly increased by the treatment with 0.1% POs-Ca. This result suggests that POs-Ca can be expected to improve SC condition and skin hydration.

Skin penetration study of POs-Ca using three-dimensional cultured human epidermal model.

We evaluated skin penetration of POs-Ca using a three-dimensional cultured epidermal model with advanced barrier function which consists of organized basal, spinous, granular, and cornified layers analogous to those found in vivo. Table 1 shows calcium ion concentration in the receiver solution and epidermal model treated with 2% POs-Ca for 24 h. The background level was detected in the receiver solution samples of POs-Ca treated and untreated groups, whereas the concentration in the epidermal model of POs-Ca treated group was increased 3.6-fold compared to that in the epidermal model of untreated group. In addition, the estimated calcium ion concentration in the epidermal model was close to the effective concentration on cultured NHEK. Phosphoryl oligosaccharides were not detected in the receiver solution samples of both groups, whereas phosphoryl oligosaccharides and its metabolites were detected in the epidermal model sample of POs-Ca treated group (data not shown). In the extract of the epidermal model treated with POs-Ca, not only phosphoryl maltotriose with MW 616, one of the major phosphoryl oligosaccharides of POs-Ca, but also phosphoryl oligosaccharides with larger molecular weight, phosphoryl maltotetraose (MW 778) and phosphoryl maltopentaose (MW 940), were detected. Glucose, maltose, maltotriose, maltotetraose, and maltopentaose were detected as metabolites of POs-Ca.

From these results, we confirmed that calcium and phosphoryl oligosaccharides in POs-Ca was able to penetrate into the epidermis of epidermal model. We expect that POs-Ca will provide a suitable amount of calcium ion to the epidermis and also give anionic oligosaccharides to the
In vivo study.

Several in vitro studies suggest that POs-Ca has useful effects for cultured NHEK and it can penetrate into the epidermis. Next, we tried an in vivo study of POs-Ca on improvement of skin conditions. The skin parameters measured after 4- and 8-week application of 2% POs-Ca were compared before the application. The results were summarized in Fig. 6.

TEWL is a parameter for evaluating skin barrier function. After 4- and 8-week application of 2% POs-Ca, TEWL significantly decreased (Fig. 6(a)) and SC hydration significantly increased (Fig. 6(b)). These results suggest that POs-Ca has good moisturizing effect. The rate of multilayered SC cells is a relative proportion of piled-up SC removed by tape-stripping. Single-layered cells desquamate in normal skin, whereas multilayered cells desquamate in dry skin and/or aged skin. In an imaging analysis of the tape-stripped SC cells, a significant decrease in the rate of multilayered desquamation of SC cells was observed (Fig. 6(c)). This result suggests that POs-Ca improves desquamation function of SC cells. The area of the tape-stripped SC cells increased in subjects in their 20s and significantly decreased in subjects in their 40s to 50s (Fig. 6(d)). With the exception of the area of the tape-stripped SC cells, the results in each age group showed similar tendency as those in the whole group (data not shown). It is known that the area of SC cells is correlated with the epidermal turnover time and age. We think that POs-Ca could contribute to the conditioning of SC and regulation of epidermal turnover. Results of the imaging analysis of silicone skin replica (Fig. 6(e)~(g)) showed that the skin texture significantly became finer and smoother. We found that POs-Ca was also effective in improving the skin texture.

From these results of the in vivo study, we confirmed that transdermal application of POs-Ca was effective for improvement of skin conditions including skin barrier function, hydration, SC function, and skin texture. It has been reported that the calcium gradient in normal, young epidermis becomes shallower with aging, and that an external negative electric potential affects epidermal ion distribution and skin barrier homeostasis. We think that...
POs-Ca could be normalize the disordered calcium gradient by providing water soluble calcium and/or anionic oligosaccharides. Another previous study demonstrated that the effect of the application of a mixture of calcium and magnesium salt on skin barrier homeostasis was higher than that of each of these salts. The report suggested that the effects of these metal ions were different depending on the counter ion and/or the method of application and that the difference of hydration level of them might preserve a better condition for skin barrier homeostasis. Our study suggests that the combination of the phosphoryl oligosaccharides ions and calcium ion might be a beneficial method of application for skin barrier homeostasis.

In vitro and in vivo studies suggest that POs-Ca can be useful to improve epidermal functions such as skin barrier function and moisturization. In conclusion, POs-Ca has the potential to be a superior active agent for healthy epidermis.

REFERENCES

