Ion-exchange Reaction of Hydroxyapatites with Eu$^{3+}$ and Tb$^{3+}$ Ions

Nobuhiro KUMADA, Nana IKUBO, Takahiro TAKEI, Nobukazu KINOMURA and Takashi SUZUKI
Faculty of Engineering, University of Yamanashi, Miyamae 7, Kofu, Yamanashi, 400-8511, Japan

(Manuscript submitted February 17, 2003; accepted March 13, 2003)

Abstract

Ion-exchange reaction of three types of synthetic hydroxyapatites was attempted with Eu$^{3+}$ and Tb$^{3+}$ ions for the purpose of preparing phosphors. The ion-exchange reaction was observed when the concentration of Eu$^{3+}$ and Tb$^{3+}$ nitrate solutions was less than 10 mmol/dm3, however, in the case of higher concentrated solution hydroxyapatites were dissolved partly to yield EuPO$_4$·H$_2$O and TbPO$_4$·H$_2$O. The emission intensity of the ion-exchanged products depended not only on the uptake amount of Eu$^{3+}$ and Tb$^{3+}$ ions but also on the Ca/(P+C) ratio of the starting HAPs.

1 Introduction

Hydroxyapatite (Ca$_{10}$(PO$_4$)$_6$(OH)$_2$), which is a major component of a bone, exhibits unique ion-exchange behavior for various ions. [1-4] The tunnel structure and high surface area of a hydroxyapatite enable it to undergo the ion-exchange reaction. The apatite has diversity of the chemical composition; Ca$^{2+}$ ion, (PO$_4$)$_3$- and OH$^-$ groups are replaced with other cations and anions, hence there are a large number of compounds in the apatite family. One of important applications of the apatite compounds is the host of phosphors, for example, Ca$_{10}$(PO$_4$)$_6$(F,Cl)$_2$:Sb$^{3+}$,Mn$^{2+}$ is used as a phosphor of a fluorescent lamp.[5] As the apatite structure is suitable for the host for phosphors, we attempted to prepare hydroxyapatite phosphors by doping activators such as Eu$^{3+}$ and Tb$^{3+}$ ions by using ion-exchange reaction. In this work three types of synthetic hydroxyapatites with the different Ca/(P+C) ratio were used, and the ion-exchange behavior and fluorescence property were investigated.

2 Experimental

Three types of hydroxyapatites for ion-exchange reaction were synthesized by adding H$_3$PO$_4$ solution (0.3 mol/dm3) to the solution suspended with Ca(OH)$_2$ (0.5 mol/dm3) until pH=8.5 at various controlled temperature.[6] The precipitate was washed, dried and ground to under 150 mesh. The chemical composition and specific surface area of three types of HAPs are listed in Table 1. As all samples contained CO$_3^{2-}$ group, the nonstoichiometry is represented as the molar ratio of Ca/(P+C) and HAp2 has the stoichiometric Ca/(P+C) ratio. Ion-exchange reaction was carried out by immersing HAp (0.1g) in 10 mmol/l Eu$^{3+}$ and Tb$^{3+}$ nitrate solutions (10 cm3) at 298 K for 1 ~ 96 h. In this condition the molar ratio of Eu$^{3+}$ or Tb$^{3+}$ ion in solution and

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ca/(P+C)</th>
<th>Specific surface area/ m2 g$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAp1</td>
<td>1.64</td>
<td>80.0</td>
</tr>
<tr>
<td>HAp2</td>
<td>1.67</td>
<td>74.4</td>
</tr>
<tr>
<td>HAp3</td>
<td>1.70</td>
<td>67.3</td>
</tr>
</tbody>
</table>
Ca2+ ion in HAp2 was 0.1. The concentration dependence of the ion-exchange reaction was checked by using 1, 2, 50 and 100 mmol/dm3 solutions. The products were separated by filtration and washed with distilled water. The ion-exchanged compounds were identified by X-ray powder diffraction using CuKα radiation. The uptake amount was determined by chemical analysis of the filtrates and the ion-exchanged compounds. UV-vis spectra between 350 and 500 nm-1 were recorded using the powder reflection technique (Jasco V-550). The fluorescence properties were investigated with a fluorescence spectrometer (Jasco FP-6500).

3 Results and Discussion

3.1 Ion-exchange reaction

The time dependence of the ion-exchange reaction with 10 mmol/dm3 Eu(NO\textsubscript{3})\textsubscript{3} and Tb(NO\textsubscript{3})\textsubscript{3} solutions indicated that the ion-exchange reactions of HAp1 and HAp2 attained equilibrium more rapidly than that of HAp3 as shown in Fig.1. At the equilibrium almost all Eu3+ and Tb3+ ions in solution were incorporated in the HApS, and the molar ratio of the released Ca2+ ion and the incorporated Eu3+ and Tb3+ ions was 3/2. The difference of the rate of the ion-exchange reaction was considered to be caused by the different specific surface area of the starting HApS. As listed in Table 1, the specific surface area increases with the decrease of the Ca/(P+C) ratio. The X-ray powder diffraction patterns of ion-exchanged compounds for 96 h. are unchanged when compared with those of the starting compound as shown in Fig. 2. These facts suggest that Ca2+ ion in three types of HApS is ion-exchanged with Eu3+ and Tb3+ ions in solution and the crystal structure of HApS is intact during the ion-exchange reaction.
The uptake amounts increased with the concentration of Eu$^{3+}$ and Tb$^{3+}$ ions in solution as shown in Fig. 3, especially, the HAp1 was more reactive than the other two. This behavior also may due to the difference of the specific surface area. However, the X-ray powder patterns of the products obtained by using more than 50 mmol/dm3 solution indicated the additional diffraction peaks which were identified with EuPO$_4$·H$_2$O[7] and TbPO$_4$·H$_2$O[8] as shown in Fig. 4. The pH of Eu$^{3+}$ and Tb$^{3+}$ nitrate solutions decreases with the concentration to reach pH=2.6 and 2.7 for 50mmol/dm3 Eu$^{3+}$ and Tb$^{3+}$ nitrate solutions, respectively, though those of 10 mmol/dm3 solutions were pH=3.2 and 4.5. It was reported that HAp was dissolved to yield Pb$_{10}$(PO$_4$)$_6$Cl$_2$ in PbCl$_2$ solution with pH=4.5~5.0.[6] Although in that case Cl$^-$ ions in the solution played an important role to precipitate Pb$_{10}$(PO$_4$)$_6$Cl$_2$, in higher concentrated Eu$^{3+}$ and Tb$^{3+}$ nitrate solutions partial dissolution of HAp might occur simultaneously to yield EuPO$_4$·H$_2$O and TbPO$_4$·H$_2$O as well as ion-exchange reaction.

Fig. 3 Concentration dependence of uptake amount of Eu$^{3+}$ (upper) and Tb$^{3+}$ (lower) ions in HAp.

Fig. 4 X-ray powder diffraction patterns of ion-exchanged products with 100 mmol Eu$^{3+}$ (left) and Tb$^{3+}$ (right) nitrate solutions. Circles indicate the peaks of EuPO$_4$·H$_2$O and TbPO$_4$.

3.2 Fluorescence property

Figure 5 shows excitation and emission spectra of the ion-exchanged HAp2 by using 10 mmol/dm3 Eu$^{3+}$ nitrate solution. The strongest absorption at 395 nm is assigned to 7F$_0$→5G$_6$ transition and the emission peaks at 592 and 615 nm are assigned to 5D$_0$→7F$_1$ and 5D$_0$→7F$_2$ transitions, respectively. For the compounds ion-exchanged with Tb$^{3+}$ ion the strong emission peak at 550 nm which is assigned to 5D$_4$→7F$_5$ transition, is used for comparison of emission intensity. The emission intensity of fluorescence increased slightly with incorporated amounts of Eu$^{3+}$ and Tb$^{3+}$ ions and depended on the starting HAp for the ion-exchanged HAp with the same amount of the activators as shown in Fig. 6. The order of the emission intensity is HAp1>HAp2≈HAp3 for Eu$^{3+}$ ion and HAp1>HAp2≈HAp3 for Tb$^{3+}$ ion. Fluorescence property of a phosphor is thought to be influenced by various

(155)
factors such as crystallinity, particle size and defect etc. as well as the crystal structure of host compounds. In this case the specific surface area and the amount of CO$_3^{2-}$ and PO$_4^{3-}$ groups in HAPs may play an important role for the fluorescence property. As seen in Fig. 6, the emission intensity of the samples doped Eu$^{3+}$ and Tb$^{3+}$ ions when precipitated the HAPs was significantly lower than those of the HAP phosphors prepared by ion-exchange reaction. The lower emission is inferred to result from that Eu$^{3+}$ and Tb$^{3+}$ ions are not incorporated in HAP but precipitate separately during the synthesis. Consequently the first attempt to use ion-exchange reaction for preparation of phosphors was successful and ion-exchange reaction is found to be available to prepare phosphors for HAPs.

Fig. 5 Excitation (left) and emission (right) spectra of the ion-exchanged HAp2 by using 10 mmol/dm3 Eu$^{3+}$ nitrate solution

Fig. 6 Emission intensity of ion-exchanged compounds with Eu$^{3+}$ (left) and Tb$^{3+}$ (right) ions. Triangles denote the samples prepared by precipitation.

References

7) JCPDS card 20-1044.
8) JCPDS card 20-1244.