Structure of dense hydrous magnesium silicates, phase D and superhydrous B: New constraints from one- and two- dimensional 29Si and 1H NMR

Xianyu Xue*, Masami Kanzaki and Anton Shatskiy (ISEI, Okayama University)

We have applied one-dimensional (1D) 1H and 29Si MAS NMR and 1H-29Si cross-polarization (CP) MAS NMR, and 2D 1H NOESY, high-resolution 1H CRAMPS (FSLG)–MAS NMR, 1H double-quantum filtered (DQF) single-quantum (1Q) -1Q correlation MAS NMR and 1H-29Si heteronuclear correlation (HETCOR) NMR techniques to gain new insights into the structure of two phases of potential mantle water reservoir, phase D and superhydrous B.

Two samples have been synthesized from a starting material of reagent-grade SiO$_2$ and Mg(OH)$_2$ in a molar ratio of 1.8 : 1, one (#1) at 24 GPa and 900°C for a duration of 3 hr., another (#2) at 24 GPa and 1100°C for 1 hr. The high-pressure experiments were performed using a 5000-ton Kawai-type double-stage uniaxial split-sphere multi-anvil apparatus (USSA-5000). Electron microprobe (chemical analysis and mapping) and micro-Raman spectroscopy have been employed for phase identifications. Sample #1 was found to consist dominantly of phase D, with some superhydrous B, stishovite and ringwoodite. Sample #2 consists dominantly of perovskite, phase D and stishovite with some superhydrous B. The Mg/Si ratio of phase D is 0.58(0.03) for sample #1 and 0.61(0.04) for #2.

For phase D in both samples, the NMR data have revealed that it has a disordered and varying local structure around both H and Si. The 29Si NMR spectra contain a nearly symmetric, broad peak near -177.7 ppm, attributable to octahedral Si. The peak shape is consistent with a disordered local structure arising from combined Mg-Si substitution and Si site vacancy. High-resolution 1H CRAMPS spectra contain a main peak near 12.6 ppm with two shoulders near 10 and 7 ppm, suggesting a disordered distribution of protons, mostly with shorter hydrogen bonds than suggested from previous single-crystal X-ray diffraction.

For superhydrous B in both samples, our comprehensive 2D NMR data have clearly revealed that it contains dissimilar proton (H1-H2) pairs and one tetrahedral Si site. These results are consistent with the space group Pnn2, but not with Pnmm (containing only a single unique H site) or P2$_1$mn (containing two types of similar proton (H1-H1 and H2-H2) pairs, and two tetrahedral Si sites).

Keywords: Crystal structure, NMR, high pressure, dense hydrous magnesium silicate, water
* Corresponding author: xianyu@misasa.okayama-u.ac.jp