生体高分子を含む calcite の結晶学的特徴

奥村大河*（東大・院理）・鈴木道生（東大・院理）・長澤寛道（東大・院農）・小暮敏博（東大・院理）

Crystallographic feature of biogenetic calcite containing organic macromolecule

T. Okumura* (Univ. of Tokyo), M. Suzuki (Univ. of Tokyo), H. Nagasawa (Univ. of Tokyo), T. Kogure (Univ. of Tokyo)

生体鉱物の多くは純粋な無機結晶ではなく、その結晶内にある程度の量の生体高分子を含んでいる。これにより生体鉱物にはその形態や機械的性質に、無機的な鉱物には見られない特徴が現れる。しばしば研究対象とされる calcite（CaCO₃）で構成された生体鉱物について、今回我々はその結晶学的特徴を調べ、無機的に形成された calcite との違いを評価した。

いくつかの calcite で構成された生体鉱物試料について、その結晶表面を次亜塩素酸で処理した後 TG-DTA 分析を行った。アコヤ貝（Pinctada fucata）の稜柱層は約 2.8wt.%の有機基質を含むと見積もられたのに対し、イワガキ（Crassostrea nippona）やホタテ貝（Patinopecten yessoensis）はそれぞれ約 1.7wt.%, 1.2wt.%と少なかった。また粉末 X 線回折（XRD）におけるピーク半価幅の拡がりから格子歪み（Δd/d）を算出すると、アコヤ貝の稜柱層の calcite は非生物起源の calcite（アイスランドスパー）やイワガキ、ホタテ貝と比べて大きな格子歪みを持つことがわかった。さらにアコヤガイ稜柱層の calcite には、(0 0 1)面と低角度で交わる格子面ほど歪みが大きいという異方性があることが示唆された。また棘皮動物のパフンウニ（Hemicentrotus pulcherrimus）の骨格でもアコヤ貝稜柱層と同様の格子歪みが測定された。透過電子顕微鏡（TEM）観察では、アコヤ貝稜柱層中の格子歪みに対応すると考えられる高密度な“まだら”のコントラストが観察された（図1）。

このような結果から、生体鉱物に導入される生体高分子の量には種によって差があり、より多く導入されるものには大きな格子歪みが生じることが示唆された。

図1. アコヤ貝稜柱層の断面の TEM 像

Keywords: biominerals, calcite, organic matrix, lattice strain, XRD

*Corresponding author: okumura@eps.s.u-tokyo.ac.jp