Behavior of Xe-Fe and Xe-Ni system under high pressure
Daisuke Hamane*, Takehiko Yagi, Takayuki Fujita, Taku Okada (ISSP)

High pressure and high temperature behaviors of Xe-Fe and Xe-Ni system have been studied using a laser-heated diamond anvil cell combined with synchrotron radiation X-ray diffraction. No new compound was found even at core pressure in Xe-Fe and Xe-Ni system, and no detectable amounts of dissolution of xenon was also found even in hcp iron up to 155 GPa.

1. はじめに
現在の地球・火星における大気は、コア重力が原始太陽系星雲ガスを補足して形成した一次大気ではなく、内部から脱ガスした二次大気である。すなわち、地球・火星の元になったコンドライト質隕石からの脱ガスである。しかしながら、地球・火星大気のXe存在度はコンドライト質隕石のものよりも少なくなっていることから（Missing Xe）、惑星内部のどこかにXeが取り込まれている可能性が考えられている。

地球・火星の中心部には主に鉄・ニッケル合金からなる核が存在しており、核形成には全球規模のダイナミクスが深く関わっている。Missing Xeにはこの核形成メカニズムが大きく関わっているという説もある。本研究では、高圧力条件下で、Xe-FeおよびXe-Ni系のふるまいを調べたので、その結果を報告する。

2. 実験
実験はレーザー加熱式ダイアモンドアンビルセルとSpring-8およびPF-Arの放射光X線を組み合わせて行った。アンビルは先端300µmキュレット、および100キュレット（300µm・ペベル付）のものを用いた。Reガスケットの試料室中には断熱材・圧力マーカーとなるNaClペレットを敷き、FeおよびNi箔をおいて、独自に開発した低温充填装置をもって液化したXeを満たした。室温で所定の圧力まで加圧した後、ファイバーレーザーで最大3000K程度まで加熱し、X線で相定し、各相の格子定数を求めた。

Keywords: Missing Xe, Earth, Mars, Core
*Corresponding author: hamane@issp.u-tokyo.ac.jp

3. 結果
Xe-Fe系
実験を行った圧力・温度範囲（30-155GPa, 1800-3000K）において、観測されるX線回折ピークはNaCl, Xe,およびFeのみで、新たな化合物の生成は確認されなかった。Xe-Fe系においては約155GPaまで詳細なhcp鉄の格子定数を取得し、Xeフリーの系におけるhcp鉄と同じ圧力スケールで比較したところ、Xeの有無無して、hcp鉄の格子定数に有為な差は認められなかった(Nishio-Hamane et al., 2010)。

Xe-Ni系
現時点では、約30GPa, 2000K程度までの実験を行ったが、Xe-Fe系と同様に、Xe-Ni系の新たな化合物の生成は確認されなかった。一方で、理論計算ではNiやPtなどの重金属とXeは強い結合性を持ちうることが指摘されており(e.g. Ono et al., 2005)、今後さらに高圧力条件下において、Xe-Ni系化合物の可能性を模索していきたい。また、固溶体の可能性も考慮し、比較のために、Xe-Ni系で使用したと同じ圧力スケールで、Xeフリー条件におけるNiの格子定数を現在測定している。

4. 参考文献