Journal of Advanced Mechanical Design, Systems, and Manufacturing
Online ISSN : 1881-3054
ISSN-L : 1881-3054
Effects of rotational velocity and hold time at folding posture on time-dependent release behavior of creased white-coated paperboard
ジャーナル フリー

2019 年 13 巻 1 号 p. JAMDSM0004


In this work, a folding experiment was performed to investigate the time-dependent creasing characteristics of white-coated paperboard of 0.3mm thickness. After folding up to the tracking angle of 90° under a specified rotational velocity, the creased part was hold for a chosen short time (0~20s) and the time-dependent release behavior of folding angle was experimentally investigated for the elapsed release time of 10s. When using the paperboard scored with a specified indentation depth, both the hold time of folded posture of creased part and the rotational velocity of fixture were varied. The folding angle of the paperboard was measured by a CCD camera of digital microscope and the bending moment resistance was measured by a load cell of bending test apparatus in the folding experiment. Through the experiment, it was found that the time-dependent release angle consisted of the hold time based intercept part and the creep-recovery based gradient part as a logarithmic function of the elapsed release time. When varying the folding velocity against a fixed unfolding velocity, the unfolded released behavior was isolated by the hold time from the first half folding velocity. Seeing the drop rate of bending moment at the tracking position and the dependency of initial release angle on the rotational velocity, a transient state and quasi-stationary state of bending moment relaxation were revealed.

© 2019 by The Japan Society of Mechanical Engineers
前の記事 次の記事