 Discrimination of achromatic colors in a bottlenose dolphin

ATSUKO KONO and KIYOSHI ASAHINA
Nihon University
CHIHIRO YUMIOKA, HIROSHI KOBAYASHI and TSUNE O ARAHATA
Shinagawa Aquarium
TSUKASA MURAYAMA
Tokai University

Abstract Dolphins live in water and their vision plays an important role in their lives. However, there is only limited information available on the visual ability of dolphins. We examined achromatic color perception in a female bottlenose dolphin (Tursiops truncatus) using a conditional position discrimination procedure. The dolphin was first trained to choose one of the two pouchcd cardboards placed left or right corresponding to the sample painted either black or white. Then the subject was tested with achromatic color (gray) samples of varying brightness. The proportion of the dolphin’s choice of the two locations gradually shifted according to the brightness of the sample, suggesting that the bottlenose dolphin has achromatic color perception similar to that of the human.

Key Words: bottlenose dolphin, achromatic colors, matching-to-sample method

多くの動物において、視覚の発達の観点で重要となる役割を果たしている。これまで動物の視覚能力については、多種多様な面から研究が行われているが、「色覚」もそのひとつに挙げることができる。動物の色覚はその生態とも密接な関わりを持っている。視覚の特性は種により大きく異なる。それは網膜の視細胞中の視覚質の種類や波長感受性を反映しており、視覚質を構成するオプションのタイプによって、一般に、多くの哺乳類では2色型、ヒトと一部のヒト以外の重鰭類は3色型の色覚を有している（岡野・深田, 1999）。

小型ハクザル類（以下、イルカ類と表記）は水界という生活環境に視覚機能を高度に適応させ、有効に利用している（Dawson, 1980）。しかし、優れた光覚能力を有している（Madsen & Herman, 1980）にも関わらず、色覚や明暗の認知に関する知見は十分ではない。これまでイルカ類の色覚についてはさまざまな観察実験が行われてきた（Griebel & Peichl, 2003）ものの、特定の有彩色を弁別したということを示す顕著な結果を得るには至っていない。解剖学的には眼球の網膜内の色覚細胞に興味がなされるが、免疫組織化学的手法による解析の結果、多くの顕微細胞体と異なり、イルカ類では短波長を感受するタイプの細胞が欠如していることが明らかとなった（Peichl, Behrmann, & Krüger, 2001）。

また、近年、細胞のオプションをコードする遺伝子が解明され、系統発生の観点から群類における色覚の
法

実験場所・被検体
実験は2000年5月13日から2001年1月16日までの249日間で、しながわ水族館（東京都品川区新譲）の屋外に設置しているイルカプール（10m×5.2m、水深3m）（Figure 1）で行った。被検体として同水族館で飼育中の健康な雄のバンドウイルカ（*Tursiops truncatus*) 1個体（体長282cm、体重273kg、推定年齢5歳）を用いた。なお、検針に際しては飼育制限等は行わなかった。また、実験を行う水槽には、被検体のほかに2個体のバンドウイルカが飼育されていたが、これらは同研究には関係せず、実験の妨げにならないよう、検針中は水族館の係員によって離れた場所にて待機させていただいた。

示示装置
塩化ビニール製の角材で、刺激のターゲット（後述）を示示する装置（幅75cm、厚105cm、奥行き30cm）を作製した。示示装置の前面には刺激のターゲットを設置するための溝を作り、示示時の各ターゲットの中心間の距離が45cmとなるようにした。刺激はこの装置を用いて示示した。

実験1 黒と白の弁別訓練
バンドウイルカの無彩色の認識を客観的に把握するため、円錐を上下に交互に示し、記録をした。
には示号装置に固定するためのフックを取り付けた。

示号方法：示号装置の中央に黒、白いずれかの見
本刺激のターゲットを示した。また、比較刺激は
その両側に示し、被験者から見て右側には B と書
かれたターゲット（以下、B ターゲットと表記）、左
側には W と書かれたターゲット（以下、W ター
ゲットと表記）を設置した。なお、これらの比較刺
激の左右の位置は実験期間を通じて固定され、位置
を入れ替えることはなかった。これらの見本及び比
較刺激は、実験者 I が示号装置を空中で持ちあげ、
ターゲットの中心から水面までの距離が45cmとなる
ように示された（Figure 2）。このとき実験者 I は
サンプルを著用し、視線による誘導をしなかった。
なお、中央に示示の見本刺激の白、黒の示順順序
はグラマン系列で順率ランダムに決定され、それ
にしたがってターゲットは実験者 II によって交換さ
れた。

Figure 2. The experimental apparatus. Samples were
displayed at the center and comparisons (B and W) were
displayed at both sides of the sample.

手続き：Figure 1 の P で待機している被験体に実
験者 III が「スタート」の合図を出し、被験体を显示
位置（Figure 1 の Q）へ向かわせた。被験体は比較
刺激のどちらか一方のターゲットを先ずタッチす
ること（以下、タッチと表記）により選択した。観
本刺激が白色の場合は左側の W ターゲットを、黒
色のときは右側の B ターゲットを選択した場合をそ
れぞれ「正解」としてホイッスルを吹き、P に反応、
報酬（魚 1 から 2 秒）を与えた（「スタート」の合図
からここまでは 1 試行とする）。なお、訓練開始当初
は「正解」を選択する試行に強化を行う連続強化の
方法をとったが、正解率（求め方は後述）の上昇に
伴い間隔強化へ移行していった。すなわち、便宜的
に、白、黒それぞれの正解率が60%を超えたときに
FR = 2、80%を超えたときに FR = 4（ただし、「ス
タート」）の合図があってもターゲットまで極端に速
回りをしたり、水面から顔を出したまま課題を行お
うとしないといったように、明らかに物の行動に
異常がなかった場合は例外的に FR = 3とした。この
ように連続強化で一応の学習を成立させ、最終的に
間欠強化にすることで反応を消えにくくさせる方法
は、条件付けを定着させるうえで有効である（Fujita,
1985）。一方、「不正解」の場合は示号装置を被験体
から速やかに遮らし、被験体は P へ戻った。

なお、一度いずれかのターゲットにタッチしたあ
とで、もう一方のターゲットにタッチし直すという
行動があった場合には、最初にタッチしたほうのタ
ーゲットを「有効」と考え、正解・不正解を判定した。

試行間隔は、P へ戻った被験体が実験者 III の前で
静止してから次の「スタート」の知らせを出すまでの
時間と定義し、それは原則として 5 秒とした。被験
体が 5 秒以上 P の位置から離れた場合には、ふたた
び P の位置に戻るのを待って、速やかに「スタート」
の知らせを出した。ただし、「不正解」の場合には、実
験者 III は被験体に背を向け、プールサイドから離れ、
10秒間のタイムアウトをとった。

実験は原則として 20 試行を 1 セッションとし、セッ
ション毎に以下の式により正解のターゲットを選択
する割合（正解率）を、黒白別々に求めた。

正解率 = 正解回数 / 全試行回数 × 100（%）

なお、2 項検定の結果を考慮して、有意（P < 0.05）
と判断される値を十分上回る「80%」を便宜的に弁
別可能な正解率と定義し、黒白それぞれの場合につい
て、ともに80%以上の正解率が 3 セッション以上続
いた時点で黒白の弁別が可能と判断する基準とし
た。実験は 1 日に 3 回または 4 セッション行ったが、
それぞれのセッションのあいだは 2 時間以上、時間
をつけた。

実験 2 灰色への挽回テスト
実験 1 と同じ黒と白の示号の中に、ブローブ試行
として様々な灰色を示し、被験体が黒と白のいず
れの反応を示すか調べた。実験 2 は、上記の実験 1
が終了した翌日から行った。

刺激：実験 1 で用いた黒と白、および B と W の 4
枚のターゲットの他に、黒から白へ段階的に変化す
る 8 種類の灰色ターゲットを作製した。これらの灰
色ターゲットは、白の割合がそれぞれ70：30、50：
50、40：60、35：65、30：70、25：75、20：80、15：
85（以下、それぞれを灰70、灰50、灰40、灰35、灰
30, 吹25, 吹20, 吹15と表記。すなわち「吹」の次の数字は黒の割合を示す。）となるようパーソナルコンピューターにより作製後、紙（29cm×29cm）に印刷し、それにラミネートを施した後に塗り板に貼り付けた。

示方法：実験 1 と同様に、条件性位置弁別の手法に従って行った。すなわち、見本として黒または白を示し、それぞれ B または W のターゲットを選択させた。そして、ベースライン 3 試行のあとの 4 試行目で、プローブ試行として見本刺激に灰色を示した。灰色のターゲットの呈示順序は実験 1 と同様の方法で決定され、プローブ試行では全消去プローブの方法を採用し、B または W のどちらのターゲットを選択してもホイッスル等による正報のフィードバックは与えなかった。強化試行、プローブ試行とも試行間隔は実験 1 と同様に定義した。実験はそれぞれの灰色が 15 回以上呈示されるまで行い（セミランダム）、各灰色に対してそれぞれ B ターゲットと W ターゲットを選択した割合を求めた。

結果

実験 1 黒と白の弁別訓練

Figure 3 に示すように、弁別における正解率の推移を示した。被験体は実験開始当初、呈示した見本色と比較刺激との関係を理解することができず、正解率は黒および白呈示時には 50%前後の低い値であった。そして、徐々に行動者がターゲットに交互に応答するよう、あるいは応答を繰り返すなどの不安定な行動がしばしば見られた。また、黒と白の正解率にも大きな差が見られ、黒白ともに弁別しているとは言えなかった。しかし、セッションが進むにつれて両者の正解率の隔たりが次第に小さくなり、全体的に真に右上がりに上昇する傾向を示した。なお強化、はあらかじめ定めた基準にしたがって、正解率の平均が 60%を超えた第 23 セッションから FR = 2, 80%を超えた第 27 セッション以降、FR = 4 であっただ。第 34 セッションからはいずれの色においても同じに高い正解率が続くようになった。また、正解率の上昇に伴って、正解率が低かった時に見られたような選択時の不安定な行動も見られなくなった。そうして、第 34 セッション以降は黒、白ともに正解率が 80%を下回ることがなくなり、安定した弁別行動が見られたことから、第 34, 35, 36 の 3 セッションで学習基準を満たしたこととなり、黒と白の弁別が成されると判断した。

実験 2 灰色の認識

Figure 3: Changes in the proportion of correct responses during training of the discrimination of two achromatic colors, black and white.

プローブ試行では、被験体は、左右に呈示してあるターゲットと中央に呈示してある灰色のターゲットの前で音を振って両者を交互に見て選択するという行動を頻繁に見せた。ただし、被験体はすべての試行において必ず B または W のターゲットを選択し、何も選ばず引いたという行動はなかった。

Figure 4 に 8 種の灰色について被験体が選択した B と W の割合を示した。被験体は黒の割合の高い（黒っぽい）灰色では W ターゲットを選択する割合が高い、黒の濃度が減少し、灰色が白っぽくなるにつれて B を選択する割合も低下するという傾向を示した。2 項検定の結果から、灰 70 から灰 30 までが有意に B を選択し、一方、灰 20, 灰 0 に有意に W を選択したと言える（P < 0.05）。なお、本実験中、強化試行である黒と白の選択については正解率がほぼ 100% 以上の値であったことから、プローブ試行中、黒と白の弁別（条件付け）は維持されていたと考えられる。

Figure 4: Changes in the response ratio along the brightness scale of gray stimuli.

考察

鰭類（小型ハクタラ類）の色覚については諸説紛々としており、色覚の有無も含めて確実な結論を得るに至っていない。そこで本研究ではその基礎的知見
を得るために、まず無彩色の識別に着目し、バンドウイルカにおける黒と白の認識について実験的な解析を試みた。ただし、本研究では比較刺激に便宜的に文字（B, W）を印刷したが、それらの左右の位置は固定されていたため、「位置」による弁別方法であったと言え、被験者が黒または白を、比較刺激に書かれた文字に弁別したのか、あるいは比較刺激の「位置」で弁別したのかは不明である。しかしながら、今回得られた結果はバンドウイルカが黒と白を異なる刺激として認識し、媒体として文字（B, W）が「位置」を用いてそれらの刺激を弁別したことを示したことには違いない。

灰色の認識に関して、被験者は灰色が黒っぽいものから白っぽいものへと変化するにつれて選択するターゲットをBからWへと選択の割合が変化した。選択の灰色をWまでを''W''（すなわち''白''）と回答した。このことから、見本の灰色の明度の変化に対応し、''W''から''白''へと認識も移行していることがわかる。しかしながら、本研究では灰色という概念を用いず、実験で用いたすべての明度の灰色を黒または白で選択させており、各灰色の認識を測る上で被験者を混乱させていた可能性が考えられる。従って、''W''、''白''を''灰色''の選択を可能にする中で、より明確なバンドウイルカの無彩色の認識を理解できると考え得る。

動物における色の認識については、これまでチンパンジー（*Pan troglodytes*）において、身ぶり言語（手話）（Gardner & Gardner, 1969）や図形文字を用いた方法で物体、数、色などに命名が可能であったことが報告されている（Asano, Kojima, Matsuzawa, Kubota, & Murofushi, 1982；Matsuzawa, 1985a）。無彩色については、Matsuzawa（1985b）がコンピューター制御された図形文字により黒と白を命名できることを明らかにした。本研究ではバンドウイルカが黒、白を何らかの媒体で弁別できることが示唆されたが、その媒体に関しては、水中で泳いでの選択しなければならない場合も含まれる。このため、弁別の効果が高いと行動上の制約も多いため、その場で比較刺激の呈示と選択ができる図形文字による手法が望ましい。これまでも、鰭類ではシロイルカにおいて文字（平面図形）が対象を示す媒体となり得ることが示されている（村山・鳥羽山, 1979）ことから、本種で図形文字が使用可能であると思われる。また、チンパンジーでは言語訓練を受けた個体のほうが、受けた個体よりも色の弁別や分類の実験において安定した成果が得られている（Matsuno, Kawai, & Matsuzawa, 2003）。ことから、本種においても言語訓練を介した実験手法のほうが、より精度の高い結果が期待できる。

引 用 文 献

村山司・鳥羽山昭夫 1997 シロイルカにおける刺激等価性に関する予備的研究 動物心理学研究, 47, 79-89.
村山司 1998 バンドウイルカにおけるコントラストの識別能力 哺乳類科学, 38, 39-44.
岡野俊行・深田吉孝 1999 色覚の進化 遺伝, 53, 39-44.
Peichl, L., Behrmann, G., & Kröger, R. H. H. 2001 For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. European Journal of Neuroscience, 13, 1520-1528.
（2004.8.11 受稿, 2005.6.11 受理）