VI 強化によって維持している
ラットのレバー押し反応に対する VR 罰の効果

早稲田大学 飯田成敏・木村 裕

The effects of variable-ratio punishment on rats' lever pressing
maintained by variable-interval reinforcement

NARITOSHI IIDA and HIROSHI KIMURA
Waseda University

Abstract The effects of reinforcement and punishment on response suppression under variable-interval reinforcement and variable-ratio punishment schedules were investigated. At baseline, lever pressing in rats was maintained by a variable-interval food reinforcement schedule. In the punishment condition, responding was punished by a grid shock under a variable-ratio schedule in which three rats experienced four or five punishment rates and a fixed reinforcement rate. Results indicated that there was a negative linear correlation between the variable-ratio punishment rate and the response rate. Results of three rats that experienced five or six reinforcement rates with a fixed punishment rate indicated that punishment suppressed responding at all reinforcement rates. These findings suggest that the punishment rate was strongly related to response suppression under both variable-interval reinforcement and variable-ratio punishment schedules.

Key words: variable-interval reinforcement, variable-ratio punishment, reinforcement rate, punishment rate, response suppression, rats

反応生起に随伴してある刺激が呈示され、その反応が抑制した場合を正の罰 (positive punishment) と言え、その刺激は正の罰者 (positive punisher) と呼ばれる。一方、反応生起に随伴してある刺激が除去または刺激呈示が停止され、その反応が抑制した場合を負の罰 (negative punishment) と言う。負の罰には、トークン等の条件性強化因子の損失を反応に随伴させる反応コスト (response cost) や、強化者を一定期間除去するタイムアウト法とがある。正の罰において、連続罰 (continuous punishment) または間歇罰 (intermittent punishment) よりも反応抑制効果が高く、一般に罰度高くなるほど反応抑制度

1 本研究は、早稲田大学特定課題研究助成費 (課題番号: 2002A-816) による補助を受けて行われた。ここに謝意を表します。
2 連絡先 e-mail: naritoshi@toki.waseda.jp
〒154-0011 東京都世田谷区上馬1-20-1

罰度の効果について報告された 4つの実験では、いずれも定量的な研究は行われていない。VI 強化事
態に対する FR 質 (Azrin et al., 1963) と FR 強化事態に対する FR 質 (Weisman & Davis, 1975) では 3 つ以上の質数値について比較されているが、残り 2 つでは質数値について 2 条件の比較がされてい
ない通り根ざしていた。したがって、定量的の研究は志向されてこなかったと言える。また、FI 質および FR 質において FI 強化で見られるスキャップ同様に非
別反射が確認される (Appel, 1968; Azrin et al., 1963) ことから、強度と反応率の関係を問題とし
た場合、強化、報酬、報酬の固定 (fixed) 型のスケジュールである (variable) 型のスケジュールの方がよう
に適当であると考えられる。しかし過去の例ではいずれも報酬スケジュールとして固定スケジュールが
使用されてることも問題点としてあげられる。
そこで、本実験では次のように分析されていなかった
VI 強化事態に対する VR 質において、報酬数と反応率の関係を確認することを目的とする。合わせて、報酬数だけではなく強化数が反応抑制に及ぼす効果の確認も行う。次いで、報酬数および強化数と反応率の関係について、報酬研究において行われてこ
なかった定量化も試みる。VI 強化における反応数 (R)
と強化数 (r) の関係は、Herrnstein (1970) によ
る等式 (1) によって表される。

\[R = R_{max} \times r / (K_{a} + r) \] \hspace{1cm} (1)

ここで、\(R_{max} \) は理論上の最大反応数、\(K_{a} \) は最大反応
数の平均の反応数の時に得られる他の強化数の合計を示している。Bradshaw, Szabadi, & Bevan (1979)
はビートを被験体として VI 強化事態に対するレスポンス
スコット法による負の値を用いた VR 質において等
式 (1) の当てはめを行い、等式 (1) によって反応数と強
化数の関係が表されることを示した。そこで本実
験でも、強化数を操作した場合の強化数と反応
数の関係に対して等式 (1) の当てはめを試みる。

方法

被験体

実験に使用したのは Wistar 系アルビノラット 6
匹を用いた。実験期間は、全ての被験体は個別飼育
ケージで飼育され、実験セッションが終了後 30 分後
にを与える固形飼料の数により自由摂食時の 65 ± 2.5%の
体重に維持された。

装置

正偏ネバネレバー 1 つと暗示示示のついたスキー
サー箱 (高さ 270mm 内径 240mm 行き 300mm) を使用した。
正偏ネバネレバーには、高さ 60mm 右から 25mm の位置に、幅
30mm 長さ 20mm のレバーを、左から 120mm、高さ 30mm の
位置に暗示示示を設置した。側面は透明アクリル板
製であった。床はステンレス製のグリッド（直径 5
mm、間隔 15mm）になっており、電気ショックの示
示が可能であった。実験制御は、NEC 社製パーソナル
コンピュータ（PC-9801FX）を、電気ショックの示
示には、室全機能製 SHOCK GENERATOR（内部
抵抗 9.1kΩ）を使用した。

手続き

各被験体は、まず、ハンドリング（10 分× 3 日）、
装置への馴致（25 分× 2 日）、次に接続によるレバー
押し反応の獲得を行った。VI 強化固定群の 3 回に対
しては、引き続いて VI スケジュールによる強化のみ
で鰓の随伴性は導入しない条件（強化条件、ベース
ライン）と、VI 強化に加えて VR スケジュールによ
る鰓の随伴性を導入した条件（鰓条件）を交互に
行った。VR 質固定群の 3 回においては、VI-60s ス
ケジュールによる強化のみで鰓の随伴性は導入しない
条件を実施した後、VI 強化に加えて VR スケジュール
による鰓の随伴性を導入した条件（鰓条件）を行った。
当初は、鰓条件を実施するため、鰓強化数の時を変更していく予定であったが、各強化サイクルで
ベースライン（鰓のない状態）での反応率を確認
することで、RAT15 と RAT16 では、鰓条件で行った
のと同じ順序で、強化のみの条件を全ての鰓条件終
了後に後続して行った。

両群の全ての条件において、3 日間連続して反応
率が安定したら、次の条件へと移行した。反応の安
定基準は、条件の順序を変更で、VI-60s スケジュールの反応
率が Matthew の反応の平均の 2.5% 以内であるこ
ととした。しかし、特に鰓の随伴性が加わった場合
には、強化のみの条件に比べて反応が安定するまで
に要するセッション数が多いことから反応率の低下を
考慮して、2.5% の基準を 15% 以上とした場合であっ
た。これについては、各個体によって実験条件
の順序を、安定基準と 3 セッションの平均反応
率、それぞれの条件で要したセッション数、実
用した強化条件、安定基準とした範囲を Table 1 に
示した。

VI 強化条件では、ラットのレバー押し反応を VI ス
ケジュールで強化した。VI-60s VR 鰓条件では、
レバー押し反応を VI スケジュールで強化と同時に
VR スケジュールで鰓とした。1 日に 1 セッション
を行い、25 分間または 30 強化をもって 1 セショッ
ン終了とした。強化子には 45ms のペリペットを示
した。鰓子にはグリッド床からの電気ショックを 0.5s
呈示した。ショックの強度は 4 mA としたが、RAT13 で
4 mA では大きく反応抑制したために途中から 0.5mA に
変更し、RAT14 で 4 mA ではあまり反応抑制が見られな
かったため途中から 5 mA に変更した。また、強化因
Table 1. The order of conditions, the number of sessions for stabilization and shock intensity (mA). Marks next to the session numbers indicate criterion of stability (no mark indicate ±2.5%, * indicate ±5%, ** indicate ±7.5% or more deviation from the mean, and — indicate instability).

<table>
<thead>
<tr>
<th>condition</th>
<th>session number</th>
<th>shock intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAT11 VI-60”</td>
<td>17 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-60</td>
<td>17 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>8 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-40</td>
<td>66 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>12 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-90</td>
<td>58 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>13 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-20</td>
<td>19 4</td>
<td></td>
</tr>
<tr>
<td>RAT12 VI-60”</td>
<td>8 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-25</td>
<td>7 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>22 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-40</td>
<td>11 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>26 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-12</td>
<td>72 ** 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>10 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-32</td>
<td>45 * 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>8 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-18</td>
<td>39 ** 4</td>
<td></td>
</tr>
<tr>
<td>RAT13 VI-60”</td>
<td>29 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-36</td>
<td>41 ** 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>9 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-48</td>
<td>21 4</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>13 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-48</td>
<td>33 ** 3.5</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>21 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-60</td>
<td>54 ** 3.5</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>15 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-24</td>
<td>10 3.5</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>15 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-36</td>
<td>22 ** 3.5</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>9 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-48</td>
<td>38 * 3.5</td>
<td></td>
</tr>
<tr>
<td>RAT14 VI-60”</td>
<td>13 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-28</td>
<td>20 4</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-28</td>
<td>49 ** 5</td>
<td></td>
</tr>
<tr>
<td>VI-20” VR-28</td>
<td>72 * 5</td>
<td></td>
</tr>
<tr>
<td>VI-40” VR-28</td>
<td>16 5</td>
<td></td>
</tr>
<tr>
<td>VI-10” VR-28</td>
<td>17 * 5</td>
<td></td>
</tr>
<tr>
<td>VI-30” VR-28</td>
<td>40 * 5</td>
<td></td>
</tr>
<tr>
<td>RAT15 VI-60”</td>
<td>42 —</td>
<td></td>
</tr>
<tr>
<td>VI-60” VR-16</td>
<td>36 ** 4</td>
<td></td>
</tr>
<tr>
<td>VI-20” VR-16</td>
<td>16 * 4</td>
<td></td>
</tr>
<tr>
<td>VI-50” VR-16</td>
<td>17 4</td>
<td></td>
</tr>
<tr>
<td>VI-40” VR-16</td>
<td>10 4</td>
<td></td>
</tr>
<tr>
<td>VI-10” VR-16</td>
<td>26 4</td>
<td></td>
</tr>
<tr>
<td>VI-20”</td>
<td>29 *</td>
<td></td>
</tr>
<tr>
<td>VI-30”</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>VI-50”</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VI-40”</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>VI-10”</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RAT16 VI-60”</td>
<td>24 —</td>
<td></td>
</tr>
<tr>
<td>VI-40” VR-24</td>
<td>14 * 4</td>
<td></td>
</tr>
<tr>
<td>VI-20” VR-24</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>VI-30” VR-24</td>
<td>11 * 4</td>
<td></td>
</tr>
<tr>
<td>VI-10” VR-24</td>
<td>24 * 4</td>
<td></td>
</tr>
<tr>
<td>VI-40”</td>
<td>48 * 4</td>
<td></td>
</tr>
<tr>
<td>VI-10” VR-24</td>
<td>17 * 4</td>
<td></td>
</tr>
<tr>
<td>VI-20”</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>VI-30”</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>VI-50”</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VI-10” VR-24</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>VI-60”</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

結果

鴨亀度と反応率

強化固定群3匹（RAT11, 12, 13）における鴨亀度と反応率の関係をFigure 1に示した。鴨亀度の相対反応率は、安定基準を含めた全てのベースラインにおける反応率の平均を1.0とした場合の比率である。全ての条件において鴨の鴨亀度の導入により反応率が低下した。RAT12で鴨を導入した5条件中、VR-25鴨がVR-32鴨よりもやや反応率が高かったこと、RAT13でVR-60鴨がVR-48鴨よりも反応率が低かったことの2点を除いては、鴨亀度が高いほど反応率は低くなった。鴨亀度の低下に伴う反応率の上昇は線形であることから、鴨亀度と反応率について単回帰分析を行った。結果、回帰式はそれぞれ \(y = 0.01x - 0.19 \)（RAT11）、\(y = 0.02x - 0.14 \)（RAT12）、\(y = 0.01x + 0.15 \)（RAT13）でした。
動物心理学研究 第55巻第2号

Figure 1. Relationship between relative response rate and punishment ratio for three rats. Points represents mean response rate for three stable sessions in which the baseline response rate was 1.0. Dotted lines indicate the best-fit solution from a linear regression analysis.

0.03 (RAT13) であり、決定係数 (R²) はそれぞれ 0.86 (RAT11), 0.91 (RAT12), 0.81 (RAT13) であった。

強化頻度と反応率

罰固定群 3 匹 (RAT14, 15, 16) における強化頻度と反応率の関係を Figure 2 に示した。図中の黒丸が罰条件、白丸が強化条件を示す。全ての個体において、罰の随伴性の導入により反応率が低下した。また、全ての個体において、反応率と強化頻度の関係は、単純な単調増加関係を示さなかった。RAT14 の罰条件においては、最も強化率の高い VI-10s で最も反応率が高く、最も強化率の低い VI-60s で最も反応率が低かったが、VI-20s, 30s, 40s においては、強化頻度が高いと反応率が高い結果を示した。RAT 15 では、罰条件、強化条件のいずれにおいても、最も強化頻度の低い VI-60s での反応率が低かった他は、反応率に大きな違いは見られなかった。RAT15 では、罰条件、強化条件のいずれにおいても最も強化頻度の高い VI-10s において反応率が高かった他は、反応率の違いは見られなかった。

等式(1)を当てはめたところ、罰条件における決定係数 (R²) はそれぞれ 0.39 (RAT14), 0.32 (RAT 15), 0.68 (RAT16) であり、ベースラインにおける決定係数 (R²) は 0.01 (RAT15), 0.38 (RAT16) であった。なお、(1)における最大反応率 (Rmax) の推定は Bradshaw et al. (1973) にならった結果、それぞれ 17.35±3.83 (RAT14 罰条件), 14.08±2.50 (RAT15 罰条件), 11.79±1.68 (RAT16 罰条件), 18.26±3.20 (RAT15 強化条件), 64.98±13.36 (RAT16 強化条件) であった。Ku の推定値はそれぞれ 0.92 (RAT14 罰条件), 0.66 (RAT15 罰条件), 0.23 (RAT16 罰条件), 1.21 (RAT15 強化条件), 0.61 (RAT16 強化条件) であった。

Figure 2. Relationship between response rate (R) and reinforcement frequency (r) for three rats. Points represents mean response rates for three stable sessions in baseline (open circles) and punishment conditions (filled circles). Curves indicate the best-fit of equation (1).

考察

本研究では、全ての被験体で、反応に随伴した電気ショックの呈示により反応が抑制した。この結果は、本実験において VR スケジュールによる電気ショッ クの呈示が正の罰として機能したことを意味する。

また、罰頻度の増加に伴い反応抑制の程度も大きくなった。この結果は、従来の知見に一致するものであり、VI 強化事態に対する VR 罰においても罰頻度が低いほど反応抑制効果も高まると言える。

罰頻度と反応抑制に関しては、これまで定量的な研究は全く行われておりず、定量化を試みたに十分
なデータもなかった。本実験では、罰頻度と反応抑制の関係はほぼ線形であることが示され、直線回帰の決定係数はおよそ0.8から0.9であった。VI強化では、極端に反応率が低い場合を除けば、反応率に関係なくほぼ同程度の強化が得られる。このことから、VI強化に対するVR罰においては、反応率を低下させることにより、強化頻度は変化しないまま罰頻度を低下させることができると考えられる。このことは、罰頻度に対しても線形に反応率が変化した原因であるかもしれません。しかし、VI強化事態に対するVR罰において罰頻度と反応率の関係は線形であるという本実験の結果は、反応の抑制率が中程度の場合に限定されるかもしれない。したがって、今後は、より高頻度およびより低頻度の罰における反応率と罰頻度の関係がどのようになるか、さらに検討する必要がある。

強化頻度と反応率に関しては、罰の導入によって反応率は低下したが、強化頻度と反応率の関係について明確な傾向は見られず、Herrnstein（1970）による等値性による決定係数はいずれも低いものであった。罰の限界性が加わっていない条件においても決定係数が低いことから、定量分析を行う上で、本実験の手続き自体に問題点が含まれると考えられる。改善すべき点としては、罰の経験は一概に罰事態での反応に影響する（Azrin, 1969；Miller, 1960；Pearl, Walters, & Anderson, 1964）ことから、強化および罰に関してスケジュール履歴を統制することがあげられる。したがって、Bradshaw et al. （1979）のように上昇系列および下降系列を使用した条件との比較を行う。罰固定条件のように各罰条件の間に強化のみの条件を行う等の方法を用いて、再実験を行う必要があると言えよう。

引用文献