Concurrent learning of multiple serial patterns and transfer in rats

TOHRU TANIUCHI
Graduate School of Socio-Environmental Studies, Kanazawa University, Kanazawa 920-1192

Abstract The present experiment examined concurrent learning of multiple serial patterns of reward amounts by rats. In Phase 1, rats were trained with 8-8-8-4-0, 4-4-4-2-0, and 2-2-2-1-0 original series, each consisting of varying number of 45 mg food pellets which were presented in the goal box of a straight runway on consecutive runs. Rats showed reliable anticipation of 0 pellet in all the series. In Phase 2, 8-8-8-1-0 novel series was added to the three original series. Anticipation of 0 pellet was more accurate in the novel series than in the original series. In Phase 3, 8-8-8-8-8-4-0, 4-4-4-4-4-2-0, and 2-2-2-2-2-1-0 seven-item series were added to the three original five-item series. Rats showed consistent anticipation of 0 pellet in the seven-item series as well as in the original five-item series. These results indicate that "less than" rule, an abstract relationship defining the decrease in reward amount, served as discriminative cue for 0 pellet, and that neither item-association learning nor serial-position learning played a major role in the learning situation used here.

Key words: rats, serial learning, discrimination learning, relational learning, runway.

これに対し、Capaldi（Capaldi & Molina, 1979; Capaldi, Nawrocki, & Verry, 1985）は、ラットは項目間連合を形成することにより、先行する項目の報酬量を弁別刺激として後続の項目を予期するという記憶弁別理論を提起するとともに、15-10-5-0 の強単調系列よりも 14-14-2-0 や 15-15-0-0 の弱単調系列における 0 ペレットに対して遅い走行が速やかに発現することを示し、法則符号化仮説に対する反証とした。この結果は記憶弁別理論では次のように説明される。15-10-5-0 強単調系列では、15 ペレットについての記憶表象である S1 の弁別刺激（シグナル）が 10 ペレットを信号する S1→10 という項目間連合の他に、S10 5, S5→0 といった連合が形成される。また、14-14-2-0 弱単調系列では、S14→14, S14→2, および S2→0 という項目間連合が形成される。系列内のシグナル間では、互いの類似性に基づいて報酬信号強度に関する刺激適応が生じる。0 ペレットのシグナルである強単調系列の S1 は弱単調系列の S1 よりも系列内の他のシグナルと類似しており、より大きな報酬信号傾向を獲得する。この結果、14-14-2-0 系列よりも 15-10-5-0 系列において 0 ペレットに対する走行は速くなると説明された。

Capaldi & Molina（1979）が示した反証に対し、Hulse（1980）は、法則学習と項目連合学習の系列学習への関与はいくつかもの条件に依存するという折衷的な仮説を提起した。すなわち、系列を構成する項目相互の弁別性が低く、項目数も多いが一貫した法則構造を持つ系列を短い走行間隔で与えられた場合には、ラットは法則構造を抽出することによって処理を要する情報量を低減することができるため、法則構造の符号化による学習が促されることがある。逆に、項目数が少なく法則構造が顕著でない場合には、項目連合学習による系列習得に必要な情報量、すなわち項目間連合の数が少なくても遅むので、項目連合学習の方が促されると説明する。このように、Hulse（1980）は、法則学習か項目連合学習かという学習過程が系列の習得に必要な記憶負荷に依存するかを考察したものである。この仮説が記憶負荷仮説と呼ばれ、系列の長さが短い学習の効果に関する仮定についてはこれを支持する証拠も報告されている（Fountain, Schenk, & Annau, 1985; 谷内, 1992）。

また、最近、谷内（1996, 1997）は、それぞれ複数の系列から構成された増加系列と減少系列というカテゴリー間の弁別学習について吟味した。その結果、系列内の単一の項目の報酬量等の局所手がかり（local cue）が弁別手がかりとして有効である場合には、法則構造ではなく局所手がかりが弁別刺激として機能することが示された。また、局所手がかりの有効性を低下させると、法則構造が弁別刺激として機能することを示唆する結果は確認された。このような結果は、単純な項目記憶が課題解決に必要な記憶負荷を低減する手がかりとして有効ではない場合に法則学習が促されることを示しており、Hulse（1980）が示唆したように、法則学習の発現に及ぼす記憶負荷の要因の重要性を示す証拠であると理解することができる。

学習に要する記憶負荷という観点から見ると、直線走路を用いた従来の報酬系列学習研究
谷内：ラットの系列学習

では、いくつかの例外を除いて（Hulse & Dorsky, 1979；谷内, 1995），被験体が学習することができ求められる系列が1種類に限定されていったという事実が注目されている。単一の系列の学習では、ほとんどの場合、法則学習と項目連合学習の両方が有効である。例えば、最も頻繁に使用されている14-7-3-1-0系の習得は、I[i] > I[i+1]という法則構造の学習によっても可能であるが、同時に、学習の指標となる0ベレットの弁別は1ベレットの記憶をシグナルとした項目間連合の形成によっても可能である。これまで、単一の系列を用いた場合には、法則構造の効果（Capaldi & Molina, 1979；Capaldi et al., 1985, 実験1）や新奇項目の推定（Haggblom & Brooks, 1985）等について法則符号化仮説とは矛盾する結果が示されてきているが、このような結果が示されてきた原因の一つとして、単一の系列を学習材料にした場合には、法則学習と項目連合学習の両方の様式の学習が有効であり、法則学習が行われるための課題要請が十分でなかった可能性も指摘できる。

そこで本研究では、直線走路事態において、法則学習は有効であるが項目連合学習は有効ではないような複数系列の並行学習事態を設定し、その学習について吟味する。まず、訓練の第1段階では、同一の被験体に対して、8-8-8-4-0, 4-4-4-2-0, および2-2-2-1-0という3種の系列を不規則な順序で提示する。これらの系列では、単一項目の記憶をシグナルとして0ベレットを弁別するという項目連合学習は有効ではない。すなわち、8-8-8-4-0系列の第4項目の記憶表現であるS^4や4-4-4-2-0系列のS^4は、各系列における0ベレットのシグナルとなる（S^4 → 0, S^2 → 0）と同時に、他の系列においては報酬項目のシグナルになると考えられる（S^4 → 4, S^4 → 2, S^2 → 2, S^1 → 1）。したがって、直前の単一の項目記憶をシグナルとした項目間連合の形成が行われた場合には、8-8-8-4-0や4-4-4-2-0系列では0ベレット予期は認められないと予測される。

一方、第1段階における3種の系列の0ベレット予期を発現させ得る学習過程の候補としては、法則学習、複合記憶に基づく項目連合学習、および、系列位置学習の3種が考えられる。まず、第1段階で提示される系列は、報酬項目には常に等価法則が先行し、0ベレットには常に減少法則が先行するという共通の構造を持っている。したがって、ラットはS+である等価法則（等価→報酬項目）とS-である減少法則（減少→0ベレット）を弁別することにより、これら3系列の0ベレットを適切に予期できると考えられる。このような様式の法則学習は、法則符号化仮説が仮定する系列全体の法則構造の学習とは異なり、一回の局所的法則を手がかりとした後続项目的弁別学習であるので、本研究では特に法則弁別学習を呼ぶこととする。次に、0ベレットの直前の項目の記憶とさらに前の項目の記憶を結合した複合記憶をシグナルとした項目間連合の形成（e.g., Capaldi & Verry, 1981）によっても0ベレット予期は可能になると考えられる。すなわち、各系列における0ベレットの弁別は、少なくともその2つ以上前までの項目の記憶を結合することによって可能になる。例えば、先行する2-2-1-0までの項目に関する複合記憶を仮定した場合には、各系列ごとにS^{*4}, S^{*2}, およびS^{*1}といった複合記憶と0ベレットとの間に項目間連合を個別に形成することによって（S^{*4} → 0, S^{*2} → 0, S^{*1} → 0）報酬項目を信号する複合記憶（e.g., S^{*8} → 8, S^{*4} → 4, S^{*2} → 2）と弁別が可能となり、0ベレットの予期が可能になると考えられる。最後に、全ての系列の0ベレットは第5項目である。したがって、系列位置の学習（e.g., Roitblat, Pologe, & Scopatz, 1983）によっても、全ての系列における0ベレットを予期することが可能であると考えられる。

第2段階では、これら3種の学習過程のいずれかが優勢であるのかについて吟味する。第1段階において訓練に使用した3種の訓練系列に加えて、第3項目から第4項目への報酬量の低下
の度合いを顕著にした8-8-8-1-0という新奇系列を提示してテストする。訓練系列と新奇系列の0ペレットに対する遂行について、前述の3つの仮説は異なる予測を導く。まず第1段階において減少則が0ペレットの信号（S-）として機能していた場合、0ペレットの提示は、減少則の検出、すなわちS-である減少則とS+である等価則との弁別が最も容易であると期待される8-8-8-1-0新奇系列において最も優れると予測される。これに対し、複合記憶に基づく項目連合学習が行われていた場合、0ペレットに先行する複合記憶が第1段階において既に0ペレット信号傾向を獲得している訓練系列（e.g., S"→0, S"→0, S"→0）の0ペレット予期の方が、そのような連合が未成立である8-8-8-1-0系列（e.g., S"→0）の0ペレット予期よりも優れると予測される。また、系列位置学習が行われた場合には、訓練系列と新奇系列の両者において0ペレットの系列位置は等しく第5項目であるので、0ペレット予期の水準は新奇系列を含む全ての系列において等しくなると予測される。

第3段階では、補足的な検討として、系列位置学習の可能性についてさらに吟味する。第2段階までに訓練に使用した8-8-8-4-0, 4-4-4-2-0, 2-2-2-1-0の5項目系列に、8-8-8-8-4-0, 4-4-4-4-2-0, 2-2-2-2-1-0の7項目系列を加えて訓練する。系列位置学習が優勢な学習過程であれば、5項目系列と7項目系列の両者において、第5走行における遅い走行が認められることが予測される。また、少なくとも7項目系列については、その導入直後に0ペレット予期は認められないと予測される。

方 法

被験体 日本チャールズ・リバー社から購入したSprague Dawley系の雄ラット8匹を被験体として用いた。被験体は実験開始時に約300-390日齢であり、約180-270日前に本研究で用いたものと同一の走路において、報酬量系列学習ではなく、単純な走行反応の習得訓練を受けた経験があった。この訓練は、20分間の探索、全15試行の走行反応の習得訓練、および全20試行の消去訓練を行うものであった。また、習得訓練は、3分間の間隔で与えられる走行ごとに45mgの飼料ペレット2粒を報酬として与えるものであった。

装置 全長162cm、幅10cm、高さ11cmの廊下式直線走路を装置として用いた。走路は30cmの出発箱、92cmの走路、40cmの目標箱からなり、出発箱と目標箱はギロチンドアによって走路部分と仕切ることができた。出発箱と目標箱は茶色、走路は黒色であった。走路全体を開閉可能な金網の蓋によって覆った。目標箱の末端には直径5cm、深さ1.5cmの餌箱を取り付けた。餌箱の手前10cmのところには光電管が設置されており、出発箱のギロチンドアを引き上げてから、ラットが光電を遮るまでの時間を1/100秒単位で測定した。実験条件にしたがった個数の45mgの飼料ペレットを報酬項目として用いた。

手続き 本訓練に先ず10日間の予備訓練を行なった。この期間に食餌制限によってラットの体重を自由摂食時の85%に減量し、±2%の精度で実験終了までこの体重を維持した。1-8日目までは毎日1分間のハンドリングを与えた。9日目と10日目には装置内の自由探索を個別に10分間与えた。このとき、装置内に置いた6粒の飼料ペレットを食べさせた。

予備訓練が終了した翌日から第1段階の訓練を24日間行なった。8-8-8-4-0, 4-4-4-2-0, および2-2-2-1-0系列を1日に各2回ずつ提示した。系列の提示順序は、同じ系列を連続して提示しないという制限の下で、3回の系列提示ごとに3日ブロックのラテン方格で替ええた。系列内の走行間隔は15-20秒間、系列間隔は10-20分間であった。ラットを出発箱に入れ、約3秒後にギロチンドアを引き上げた。ラットが目標箱に達すると目標箱側のドアを降ろした。
谷内：ラットの系列学習

報酬項目の場合、ラットが全ての餌ペットを食べ尽くすと取り出して拘留用ケージに移し、走行間隔が経過した後に次の走行を開始した。0 ベレットの場合は目標箱に20秒間留めた後に取り出した。いずれの走行においても、ラットが60秒以内に目標箱に入らない場合は実験者が目標箱に入れた。この場合の走行時間は60秒とした。系列の最後の走行が終了すると、ラットを待機用ケージに移し、系列間隔が経過した後に次の系列の提示を開始した。1日の訓練が終了するとラットを飼育用ケージに戻し、最後の走行から20分以上経過した後に飼育用飼料を与えた。

第1段階終了の翌日から、第2段階の訓練を3日間行った。第3段階では第1段階の訓練に用いた3種の系列に8-8-8-1-0系列を加えて、1日に各系列を4系列ブロックで2回ずつ計8系列を提示した。その他の手続きは第1段階と同じであった。

第2段階終了の翌日から第3段階の訓練を3日間行った。第3段階では、第1段階で訓練した8-8-8-4-0、4-4-4-2-0、および2-2-2-1-0の3種の5項目系列と、8-8-8-8-4-0、4-4-4-4-2-0、2-2-2-2-1-0という3種の7項目系列を、第1項目が等しい系列を選択して提示しないという制限の下で、1日に各1回ずつ計6系列を提示した。その他の手続きは第1・第2段階と同じであった。

実験は2回に分けて行った。4匹の被験体について全ての実験手続きを完了した後に、残りの4匹について同じ手続きを繰り返した。

結 果

第1段階 本研究では、ラットの遂行を表す指標として走行速度(cm/秒)を用いた。これは、出発箱の出口から目標箱内の光電までの距離を走行時間によって除したものである。Figure 1は、第1段階における各系列に対する平均走行速度を3日ブロックで示している。0ベレット予期の発現について評価するために、第5走行とその他の走行における走行速度を対比検定を用いた計画比較によって比較したところ、0ベレットに対する走行は第3ブロック以降は全ての系列において他の全ての走行よりも遅いことが示された(P<0.05)。この結果は、訓練の比較的初期から全ての系列において0ベレット予期が発現したことを示している。また、最終の第8ブロックについて、各系列内の走行を対比検定を用いた計画比較によって比較した。その結果、8-8-8-4-0系列では、第1走行と第5走行は第2、3、4走行よりも遅く、第5走行は第1走行よりも遅かった(P<0.05)。4-4-4-2-0系列では、第5走行は第1-4走行よりも遅く、第1走行と第4走行は第2走行よりも遅かった(P<0.05)。また、2-2-2-1-0系列では、第4走行と第5走行は第1-3走行よりも遅く、第5走行は第4走行よりも遅かった(P<0.05)。これらの結果は、全ての群において有意なペレット予期が認められたが、4-4-4-2-0系列や2-2-2-1-0系列では第4走行に対しても走行速度の低下が生じたことを示している。Figure 1に示したデータにおいて、系列(3)×走行(5)×日ブロック(8)×被験体の分散分析を施した。その結果、系列(F[2, 14] = 27.58, P<0.01)、走行(F[4, 28] = 55.63, P<0.01)、日ブロック(F[7, 49] = 40.60, P<0.01)の主効果、および、系列×走行(F[8, 56] = 8.59, P<0.01)、走行×日ブロック(F[28, 196] = 22.68, P<0.01)の交互作用が有意であった。系列×走行の交互作用について走行ごとの系列の単純主効果を吟味したところ、1走行では有意ではないが(F<1)、第2-5走行では有意であった(Fs[2, 70] = 4.84, 23.35, 42.61, 13.73, P<0.01、第2走行のみ P<0.03)。第2-5走行における系列の単純主効果についてNewman-Keuls 検定を行った。その結果、第2走行は8-8-8-4-0系列よりも2-2-2-1-0系列で遅かった(P<0.05)。また、第3-5走行は、8-8-8-4-0系列よりも4-4-4-2-0系列で遅く、4-4-4-2-0系列よりも2-2-2-1-0系列で遅かった(P<0.05)。これらの結果は、報酬項目に対する
Figure 1. Mean running speeds for 8-8-8-4-0, 4-4-4-2-0, and 2-2-2-1-0 original series in blocks of three days during Phase 1. Each series was presented twice per day.
谷内：ラットの系列学習

Figure 2. Mean running speeds for 8-8-8-1-0 novel series and for 8-8-8-4-0, 4-4-4-2-0, and 2-2-2-1-0 original series on the first presentation of the series (far left panel) and on each of three days during Phase 2. Each series was presented twice per day.
計画比較の結果と合致するものである。

第3段階 Figure 3 は、第3段階における各系列に対する平均走行速度を示している。第1-5走行の速度を5項目系列と7項目系列の間で比較するために、第1-5走行のデータのみを用いて、系列の長さ(2)×系列(3)×走行(5)×日(3)×被験体の分散分析を行った。その結果、系列の長さ($F[1, 7] = 19.03, p < .01$)、系列($F[2, 14] = 14.34, p < .01$)、走行($F[4, 28] = 38.46, p < .01$)の主効果、および、系列の長さ×走行の交互作用($F[4, 28] = 50.98, p < .01$)が有意であった。系列の長さ×走行の交互作用について走行ごとの系列の長さの単純主効果を吟味した。その結果、第1-4走行では有意ではないが(Fs < 1)、第5走行では7項目系列よりも5項目系列の走行が有意に遅かった($F[1, 35] = 193.09, p < .01$)。また、5項目系列と7項目系列の両者において0ペレット予期が生じたことを確認するために、系列の長さに関する条件ごとに3種の系列それぞれにおける報酬項目に対する走行と0ペレットに対する走行を対比検定を用いた計画比較によって比較した。その結果、0ペレットに対する走行は、全ての5項目系列と全ての7項目系列において、全ての報酬項目よりも遅かった($ps < .01$)。これらの結果は、5項目系列だけでなく第3段階で初めて導入された7項目系列においても有意な0ペレット予期が即座に発現したことを示している。

考察

本研究では、複数系列の併行学習について吟味した。第1段階は8-8-8-4-0、4-4-4-2-0、および、2-2-2-1-0系列の併行学習であったが、全ての系列において有意な0ペレット予期が認められた。Capaldi & Molina (1979) が主張したように、項目間連合のシグナルとして単一の項目記憶だけを仮定した場合には、8-8-8-4-0系列のS^1や4-4-4-2-0系列のS^2は各系列におけ
谷内：ラットの系列学習

0ペレットのシグナルである（S^→0, S^2→0）と同時に、他の系列における報酬項目のシグナルになり（S^→4, S^4→2, S^2→2, S^2→1），これらは互いに弁別不可能であると考えられる。したがって、直前の単一の項目記憶だけをシグナルとして仮定した項目連合学習では、第1段階において認められた8-8-8-0系列や4-4-4-2-0系列の0ペレット予期については説明できないと結論することができる。

これに対し、第1段階における0ペレット予期は、法則弁別学習、複合記憶に基づく項目連合学習、および系列位置学習という3つの模式の学習によって可能であった。そこで、第2段階では、第1段階において訓練に使用した訓練系列に加えて、第3項目から第4項目への報酬量の低下の度合いを顕著にした8-8-8-1-0という新奇系列を提示することによって、上記の3つの学習過程のいずれが優勢であったのかを吟味した。その結果、0ペレット予期は、新奇系列を導入した直後から、訓練系列よりも8-8-8-1-0新奇系列において有意に優れた。この結果は、第3項目と第4項目の間の減少法則が0ペレットの弁別刺激として機能するという法則弁別仮説の予測と一致するものである。減少法則が0ペレットの弁別刺激（S）として機能した場合、0ペレット予期は、減少法則の検出、すなわちS→である減少法則とS+である等価法則との弁別が最も容易であると期待される8-8-8-1-0新奇系列において最も優れると予測された。第2段階の結果はこの予測を支持するものであり、ラットが項目間の抽象的関係性である減少法則を弁別刺激として0ペレットを予期したことを示唆するものである。

一方、第2段階における訓練系列と新奇系列に対する遂行の結果は、複合記憶に基づく項目連合学習や系列位置学習が行われた場合に予測された結果とは矛盾するものであった。まず、複合記憶に基づく項目連合学習が行われていた場合、0ペレットに先行する複合記憶が第1段階において既に0ペレット信号傾向を獲得している訓練系列（e.g., S^→0, S^2→0, S^3→0）の0ペレット予期の方が、複合記憶（e.g., S^3→1）と0ペレットの間の連合が未成立である8-8-8-1-0新奇系列の0ペレット予期よりも優れると予測された。しかしながら、新奇系列が初めて提示された試行においても、0ペレット予期は訓練系列よりも新奇系列において有意に優れた。したがって、この結果は、複合記憶に基づく項目連合学習からの予測とは矛盾するものであると説える。

また、系列位置学習が行われた場合には、訓練系列と新奇系列の両者において0ペレットの系列位置は第5段階であるので、0ペレット予期の精度は新奇系列を含む全ての系列において等しくなると予測された。したがって、新奇系列と訓練系列の間で0ペレット予期に差が認められたという結果は、系列位置学習からの予測とは矛盾するものであるといえる。系列位置学習の可能性については、第3段階においても補足的に吟味した。この段階では、第1段階で提示した8-8-8-4-0, 4-4-4-2-0, 2-2-2-1-0の5項目系列に、8-8-8-8-4-0, 4-4-4-4-2-0, 2-2-2-2-1-0の7項目系列を新たに加えたが、5項目系列だけでなく7項目系列においても0ペレット予期が既に発現した。また、第5走行については5項目系列と7項目系列の間で差が認められ、5項目系列についてのみ遅い走行が認められた。これらの結果は、系列位置学習が行われた場合に予測される結果に明らかに反するものである。このように、第2段階と第3段階の結果は、本研究における系列位置学習の可能性については否定的なものであると結論できる。

これまでに、直線走行における報酬系列学習において、ラットが走行回数の計数に基づく項目予期を示すことが報告されている（e.g., Burns & Nesbitt, 1990; Capaldi & Miller, 1988）。したがって、ラットは0ペレット系列の系列位置学習を行い得る基礎的機能を有していると考えられる。しかしながら、0ペレットのシ
グナルとして直前の項目の報酬量が有効である場合には、系列位置学習よりも項目連合学習が優勢な学習過程となることを示した証拠もある（e.g., Haggblom, 1985）。また水原（1991）は、直線走路事態におけるラットの計数研究について評論したなかで、系列内の項目同士の弁別性が低く項目間連合による項目予期が困難である場合に、計数に基づく項目予期が行われる可能性を指摘している（p.72）。本研究における複数系列の併行学習事態では、単一の項目ではないが、複数項目の複合記憶もしくは項目間の関係性といった項目に関する情報が0ペレットの弁別刺激として有効であった。したがって、水原（1991）が示唆したように、本研究においても、項目情報が系列位置情報を隠蔽したと考えることは可能であると思われる。系列学習における項目情報の有効性と系列位置学習の関係について直接的に吟味する必要がある。

ところで、動物種間の知的能力を、彼等が形成および操作し得る心的表象の水準という点から比較するという接点法がある。例えば、Premack（1983）は動物における心的表象を、刺激に関する感覚的水準における具体的な表象と、刺激の機能や刺激間の関係性に関する抽象的表象に区分している。刺激の具体的な表象の間の連合学習は比較的基礎的な過程であるが、刺激間の関係性等に関する抽象的表象の形成に基づく学習は高い心的機能であるとされた。非霊長類における抽象的表象の形成と操作の可能性については議論の多問題であり、特にラットにおける刺激間の関係性に関する抽象的関係性の学習を示す証拠は欠如していることが指摘されている（e.g., Roitblat & Fersen, 1992）。ラットの系列パターン学習における法則学習と項目連合学習では、学習に必要とされる心的表象の水準において異なることがわかるであろう。例えば、複合記憶に基づく項目連合学習の場合は、複数の項目に関する具体的記憶である形態的刺激が形成され（e.g., S^8S, S^8+），後続项目的シグナルとなると考えられ、このような形態刺激は項目間の関係性を一切含まないものであり、これを構成する項目の報酬量といった刺激の物理的性質によって規定されるものである。これに対し、法則学習では、その基礎過程として隣接する項目間の抽象的関係性である法則の符号化を仮定する。このような符号化においては、例えば、8-8と4-4もしくは8-4と
4-2 といった具体的な報酬量において異なる刺激対について、ラットが“等価”や“減少”という同一の抽象的関係性を抽出できることが必要である。このように、ラットにおける法則学習を実証する試みは、動物種における抽象的表象の使用という議論の多い問題について検討するという意義を持っている。

ハトにおける見本合せ学習や同異性弁別学習では、刺激例数が少ない場合には刺激の具体的記憶に基づく条件性弁別学習が行われるが（Wilson, Mackintosh, & Boakes, 1985）、刺激例数が多い場合には同異性概念の形成という刺激間の関係性に基づく学習が行われる（e.g., Santiago & Wright, 1984）ことが指摘されている（e.g., Macphail, Good, Honey, & Willis, 1995）。ラットの系列パターン学習では、具体的表象だけでなく仮定する項目連合学習については、先行する単一の項目（Capaldi, Verry, & Davidson, 1980）もしくは複数の項目（Capaldi, Nawrocki, & Verry, 1983; Capaldi & Verry, 1981）を手がかりとした後続項目の弁別学習が成立することが明らかに実証されている。これに対し、法則学習については未だにその存在を実証すべき段階にあるように思われるが、この事実もまた、ラットにおける事象間の関係性の学習が比較的困難なものであることを示すのかもしれない。ラットにおいて、法則学習という刺激間の関係性に関する学習の成立を明確に実証すること、および、そのような学習の発現に関わる条件をさらに明らかにすることが重要であると思われる。

引用文献

(1997.11.4 受稿, 1998.3.6 受理)