パークによるアンモニア吸着および脱臭特性に関する実証的研究

堤口 隆哉, 浮田 正夫, 関根 雅彦, 今井 剛

本研究では、パークによるアンモニアの吸着および脱臭特性を把握するために、実際に下水汚泥等堆肥化施設で稼働しているパーク脱臭槽で採取した充填パーク（製品堆肥20%混合物）を用いて実験的検討を行った。まず、アンモニアの静的飽和吸着量を測定した結果、湿潤状態で2900mg/m²/100g-dry、乾燥状態で420mg/m²/100g-dryという値が得られた。また、アンモニアは充填パークとの接触直後に90〜96%が吸着した。パークパック抽出液を含む、吸着したアンモニアの多くがアンモニア性窒素（NH₃-N）として検出されるが、時間経過とともにやや減少する傾向にあった。この原因として、初期はパーク中の有機成分との化学的結合による形態変化、その後は酸化作用による酸化の可能性が考えられた。抽出済中の塩酸酸性、硝酸酸性窒素（NOₓ⁻N）は次第に減少する傾向にあったことから、充填パーク内に部分的に湿気状態が形成され、脱臭作用が生じたことが考えられた。酸化作用によるNH₃-N除去速度および脱臭作用によるNOₓ⁻N除去速度の最大値は、それぞれ0.087mg NH₃-N/h・g-dryおよび0.38mg NOₓ⁻N/h・g-dryであった。

1. 緒言

近年、畜産経営を取り巻く情勢の変化や都市化の進展の中で、家畜飼育あるいはそれらの堆肥化に起因する悪臭問題が深刻化してきている。全国の悪臭苦情に占める畜産農業の割合は平成17年度で10.5%となっており、割合としては高くないがここ数年横ばい状態で抜本的な解決には至っていない。また、畜産農業への苦情全体の中で、悪臭は半面18年度で57.3%を占めており、悪臭問題の解決が畜産農業本来の環境問題改善のために不可欠な状態となっている。

畜産農業において大きな悪臭発生源となるのが家畜舎の堆肥化過程であり、家畜の種類や投入する副資材によって違いはあるが、アンモニアなどの窒素化合物、硫化水素などの硫黄化合物、プロピオン酸などの低級脂肪酸などが代表的な悪臭物質として知られている。堆肥化過程における臭気対策としては、施設の遮断化、堆肥化条件の改善、脱臭方法の適用などがあり、脱臭方法としては燃焼法、液洗浄法、吸着法、生物脱臭法、オゾン酸化法などが有効とされている。これらの中で、吸着法は装置が簡単で取り扱いやすいなどの多くの長所があり、おがくず、もみがら、廃紙、リボ、クレーア、カーク（樹皮）などが吸着剤として用いられているが、吸着が達成されると吸着剤の交換が必要なことがある大きな欠点となっている。一方、おがくずやパークなどの吸着剤と製品堆肥を混合して使用した場合には、吸着だけではなく生物脱臭の作用も加わって長期効果的な脱臭が維持されることが知られている。特に、パークは樹木の伐採や製材に伴って発生し、産業廃棄物として処理される場合も多いが、化学的な消臭作用の存在も指摘されており、積極的な活用に向けて検討が進められつつある。

パークを脱臭用にいうケースとしては、畜舎の敷料にしたり堆肥化副資材として混合したりする方法、パーク全体をバイオフィルターの担体とする方法、パークを堆肥化したものを脱臭槽に堆積させたりする方法などがあり、パークに限らず木質系資材という広い観点から見た場合でも、脱臭に関するさまざまな研究が行われている。しかし、パークそのものが持つ脱臭特性に関しては、アンモニアと硫黄化合物に対する吸着能力についての基礎的検討例が存在するものの、科学的観察データの蓄積は十分とは言えない。そこで本研究では、畜産農業などから発生する代表的な悪臭物質であるアンモニアを対象として、実際に稼働しているパーク脱臭槽から採取したバークを用いた室内実験を行ったことによって、基本的な吸着および脱臭特性を把握し、より効果的な悪臭対策確立のための基礎資料を得ることを目的とした。

本研究では、まず脱臭能力に直接関与する因子として、静的条件におけるアンモニアの飽和吸着量を測定し
た。次に、アンモニア吸着開始から1時間までの短時間スケールおよび48時間までの長時間スケールにおいて、パーク抽出液中のアンモニア性窒素（以後、NH_{3}-N と略記する）および亜硝酸性・硝酸性窒素（以後、NO_{2/-3}-N と略記する）の変化を測定し、吸着したアンモニアの窒素分としての挙動を微生物反応を考慮しながら検討した。

2. 実験方法
2.1 試料源としたパーク脱臭槽
本研究では、下水汚泥を堆肥化する施設で実際に稼働しているパーク脱臭槽から試料を採取した。本施設は家畜廃尿の堆肥化施設ではないが、臭気の主成分としてアンモニアが発生していることから対象とした。本施設は堆積式で堆肥を重ねており、発酵過程で製品堆肥と原料の4:1〜5:1の比率で混合して水分調整を行っている。脱臭槽は、図-1に示すように幅7m、長さ20m、高さ2mのコンクリート製であり、堆肥化施設内の気温を150℃/minで脱臭槽の下から三角に分岐して送風している。屋根は設置されているが側面は開放系であり、定期的に散水を行っている。パークは針葉樹で平均長さ10mmであり、脱臭槽にはパークと製品堆肥を充填比8:2で混合したもの（以後、充填パークと略記する）を充填している。年に1〜2回の頻度で充填パークを空けるための切り返しを行ったり、試料採取時はパークの充填から約1年が経過していたが、脱臭槽上でアンモニア臭は感知されなかった。

2.2 試料
2.2.1 アンモニアの静的飽和吸着量の測定
本実験では、2005年10月9日に採取した試料を用いた。現地では、脱臭槽中央部の上層（表面から深さ10cm地点）、中層（同70cm地点）、下層（同140cm地点）までシャベルを用いて掘り下げ、検査管を挿入してアンモニア濃度を測定するとともに、アンモニアにほとんど曝露されていないと考えられる上層の充填パークをボリ容器に採取して持ち帰った。また、脱臭槽に送気されるガス中のアンモニア濃度も検査管で測定した。

2.2.2 短時間スケールにおける窒素分の挙動把握
本実験では、2005年12月8日に採取した試料を用い

2.2.3 長時間スケールにおける窒素分の挙動把握
本実験では、2006年2月2日に採取した試料を用いた。前回の試料採取時と同様に脱臭槽上面の各ポイントでアンモニアの測定を行い、アンモニアが検出されたポイントについて、上層および中層の充填パークをボリ容器に採取して持ち帰った。

2.3 実験手順
2.3.1 アンモニアの静的飽和吸着量の測定
混液状態および乾燥状態の静的飽和吸着量を測定するため、それぞれ下記の方法で実験を行った。まず、混液状態の上層充填パーク（含水率54.6%）10gを容積1Lのポリエチレン製バケツに入れ、活性炭極を通過させた清浄空気800mLとアンモニア（純処）50mLを注入して密閉した。その後、手で攪拌して20分間静置し、バケツ内のアンモニア濃度を検査管によって測定した。そして、新たにアンモニアガスを50mL注入し、同様に操作を行った。これをアンモニア吸着量の增加が認められないまで繰り返し行った。次に、上層充填パークを105℃で24時間乾燥させた後、10gを容積1Lのポリエチレン製バケツに入れて活性炭極を通過させた清浄空気800mLとアンモニアガス10mLを注入して密閉した。その後、手で攪拌して20分間静置し、バケツ内のアンモニア濃度を検査管によって測定した。そして、新たにアンモニアガスを10mL注入し、同様の操作を行った。これをアンモニア吸着量の増加が認められなくなるまで繰り返し行った。アンモニア吸着量（mL）は、吸着後のバケツ内アンモニア濃度（ppm）とバケツ内全ガス量（mL）から吸着後のバケツ内アンモニアガス量を求め、これをバケツに注入した累積アンモニアガス量（mL）から差し引くことによって算出した。なお、
検知管による濃度測定に伴うパック内全ガス量の減少も考慮して値を算出した。

2.3.2 短時間スケールにおける窒素分の挙動把握

持ち帰った各充填パック10 gを容積1 Lのボリエスタール製パックに入れ、活性炭槽を通過させた浄空気800 mLとアンモニアガス100 mLを注入して密閉した。そして、注入直後および10分、20分、30分、60分経過後の各々について、パック内のアンモニア濃度を検知管によって測定するとともに、充填パックの蒸留水抽出液を作製して液中の水抽出性のNH₃-NおよびNO₂⁻N濃度を測定した。また、プランク実験としてパックに充填パックを入れない条件でアンモニア濃度の経時変化を測定した。抽出液の作製では、まず充填パックを容積500 mLの三角フラスコに取り出して100 mLの蒸留水と混合し、5分間摺拌後、その後、得られた抽出液を3500 rpmで10分間遠心分離して吸収ろ過し、ろ液を分析に供した。NH₃-NおよびNO₂⁻N濃度はそれぞれJIS K0102:1998に定めるインドフェノール青吸光光度法および硫酸ヒドラジニウム還元法によって測定した。

2.3.3 長時間スケールにおける窒素分の挙動把握

まず、持ち帰った各充填パック250 gを容積1 Lのビーカーに入れて十分摺拌した。この摺拌によって、充填パック全体に酸素を行き渡らせるとともに、試料をより均一化させることをねらった。その後、pH測定とNH₃-N、NO₂⁻N濃度の測定に分けて抽出液の作製を行、各項目を測定した。この測定は、容積1 Lのビーカーに入れた各充填パックを0時間、6時間、12時間、24時間、36時間、48時間静置した試料について行った。ここで、pH測定用の抽出液は、各充填パック10 gを容積100 mLのビーカーに取り、蒸留水100 mLを加えて5分間摺拌することによって作製した。NH₃-NおよびNO₂⁻N濃度測定用の抽出液は、抽出効率を向上させるために塩化カリウム溶液を用いて以下の方法で作製した。すなわち、各充填パック10 gを容積500 mLの三角フラスコに取り出して10％塩化カリウム溶液100 mLと混合し、5分間摺拌して抽出液を得た。この操作を4回繰り返し、得られた抽出液を合わせて3500 rpmで10分間遠心分離し、吸収ろ過し、ろ液中のNH₃-NおよびNO₂⁻N濃度はそれぞれJIS K0102:1998に定めるインドフェノール青吸光光度法および硫酸ヒドラジニウム還元法によって測定した。

3. 結果および考察

3.1 アンモニアの静的飽和吸着量の測定

脱臭槽に送気されるガス中のアンモニア濃度は300 ppmであったが、脱臭槽の上層、中層、下層におけるアンモニア濃度は、それぞれN.D.（<1 ppm）、5 ppm、3 ppmであり、効果的な脱臭が行われていると考えられた。ただし、脱臭槽中ではガスの通気経路が不均一であり濃度のむらが存在すると予想され、今回の測定結果が代表的な値であるとは断言できない。

湿潤状態および乾燥状態の充填パックを用いたアンモニアの静的吸着実験における、パック内アンモニア濃度とアンモニア吸着量の関係（吸着等温線）を図2に示す。なお、本実験実施時の室内温度は22℃であった。図2を用いるとLangmuir型の吸着等温線となっていることから、Langmuirプロットを作成すると図3のように、本実験の結果をLangmuirの吸着等温式に当てはめたところ、湿潤状態および乾燥状態の充填パックについて、それぞれ(1)式および(2)式が得られた。

\[V = \frac{7.9 \times 10^{-4} \times 190 \times C}{1 + 7.9 \times 10^{-4} \times C} \]
\[(1) \]

\[V = \frac{1.5 \times 10^{-3} \times 60 \times C}{1 + 1.5 \times 10^{-3} \times C} \]
\[(2) \]

ここで、V：アンモニア吸着量（mL）、C：パック内アンモニア濃度（ppm）である。(1)式および(2)式の係数から、湿潤状態および乾燥状態でのアンモニアの静的飽和
吸着量は、それぞれ190mL/10g-wet（2900mg/100g-dry）、60mL/10g-dry（420mg/100g-dry）という値が得られた。従来の知見17, 18によると、アンモニアの吸着量としておおむね乾材（含水率10.0%）で300mg/100g-dry、おおむね湿材（含水率64.0%）で550mg/100g-dry、もみ乾材（含水率17.6%）で320mg/100g-dry、もみ湿材（含水率60.1%）で600mg/100g-dry、ゼオライト（含水率15.0%）で700mg/100g-dryという値が報告されている。また、笠井ら19は含水率0～44%の6種類のバークによるアンモニア平衡吸着量を測定し、450mg/100g（含水率0%の新鮮バーク）～640mg/100g（含水率28%の流通バーク）という結果を示している。測定方法が異なるために直接の比較はできないが、本実験で算出した値は湿润状態および乾燥状態とともに上記の報告値と同様あるいはそれを上回る値となっており、本実験で用いた充填バークは非常に高いアンモニア吸着能力を持っていることが明らかとなった。バークは物理的吸着だけではなく化学吸着も起こることが知られており20、湿润状態ではさらにアンモニア水への溶出にによって見かけの吸着量が増加するために、このような値になったと考えられる。

3.2 短時間スケールにおける窒素分の挙動把握

脱臭槽上面に設置した13箇所のポイントのうち、アンモニアが検出されたのは3箇所であった。各ポイントの上層、中層、下層におけるアンモニア濃度および気相、中層の充填バークの含水率を表-1に示す。これら3箇所の上層および中層の充填バークについて短時間スケールにおける窒素分の挙動把握実験を行い、バーク内のアンモニア濃度を測定したものが図-4である。ここで、バーク内アンモニア量（mgL）はバーク内アンモニア濃度（ppm）とバーク内全窒素量（mgL）から算出した。なお、プラン実験の結果、初期加入量に対する60分経過後のバーク内アンモニア残存率は90%であり、バークへの吸着を起こしていないことを確認している。図-4を見ると、アンモニア濃度は初期に90～96%が吸着し、その後徐々に減少する傾向にあることが分かる。したがって、吸着に要するアンモニアと充填バークの接触時間は短時間であると考えられる。

図-5は、各充填バークについて気中アンモニア濃度、抽出液中のNH₃-NおよびNO₂⁻-N濃度から各形態の窒素分（mgN）を算出し、その経時変化をまとめたものである。ここで、初期状態とはアンモニアガス注入前の充填バーク抽出液中のNH₃-N、NO₂⁻-N（試料によって持ち込まれた窒素分）に注入したアンモニアガス性窒素（以後、NH₃(g)-Nと略記する）を足し合わせたものである。図-5を見ると、アンモニアガスの注入に伴ってNH₃-Nが増加していることから、NH₃(g)-Nの多くがNH₃-Nとして抽出液中に検出されていることが分かる。その後、明確な変化は認められにくいが、NH₃-Nは時間経過とともにやや減少する傾向にある。この点に関して、本実験が1時間という短時間スケールである点を考慮すると、微生物（硝化菌）が関与してNO₂⁻-Nへの変換が進んでと考ええるよりも、バーク中の有機成分との化学的結合が起こり、抽出されない形態になった可能性が高いと考えられる。実際、バーク中に存在する天然ポリフェノール化合物であるタンニンがアンモニア除去効果を持つことが指摘されている21。なお、図-5ではいずれの充填バークにおいても初期状態と60分後で約50mgNの差が生じているが、本実験では蒸留水を用いて1回のみの抽出操作で水抽出性の窒素分を測定しており、全量を抽出し得なかった点、また抽出液の一部が試料に残って全量回収できなかった点が原因として挙げられる。

3.3 長時間スケールにおける窒素分の挙動把握

脱臭槽上面に設定した13箇所のポイントのうち、アンモニアが検出されたポイント1箇所を選定して試料採
取を行った。試料採取地点の上層，中層におけるアンモニア濃度はそれぞれ N.D.（<1 ppm）、90 ppm であり，上層，中層の充填バークの含水率はそれぞれ 56.5％，63.1％であった。

持ち帰った充填バークの静置 0～48 時間後について抽出液の pH を測定したところ，上層充填バークは静置 0 時間後で 6.6 であったものが 6.5～7.0 で変動し，中層充填バークは静置 0 時間後で 8.7 であったものが 8.1 まで徐々に低下した。図-5 は，各充填バークについて抽出液中の NH₃-N および NO₂⁻-N 濃度から各形態の窒素分を算出し，その経時変化をまとめたものである。ここで，経過時間 0 時間における値が試料によって持ち込まれた窒素分である。上層充填バークについては，NH₃-N が静置 0～6 時間において大きく減少し，その後時間経過とともにやや減少する傾向にあるが，試料採取が 2 月で外気が低温であった点を考慮すると，実験初期の減少については実験室内で温暖な空気で被覆充填バークに吸着していたアンモニアが脱着した可能性が考えられる。また，その後の緩やかな減少については，温度の上昇に伴って硝化菌の活性が高まり，NO₂⁻-N への酸化が進んだ可能性が考えられる。中層充填バークについては実験初期を除いては明確な減少傾向が認められなかったが，中層充填バークは上層のように pH が高く，硝化菌の活性が低かったことが一因として考えられる。NO₂⁻-N の推移に注目すると，明確ではないものの上層・中層充填バークともに次第に減少する傾向にあることから，静置している間に充填バークに生息していた硝化菌や好気性微生物による酸素の消費によって部分的に嫌気状態が形成され，脱窒作用が生じることが考えられる。

図-5 短時間スケールでの実験における各形態の窒素分の経時変化

図-6 長時間スケールでの実験における各形態の窒素分の経時変化

表-2 は，各充填バークの乾燥重量あたりの NH₃-N 除去速度および NO₂⁻-N 除去速度を算出した結果である。NH₃-N 除去速度は上層・中層充填バークともに静置 0～4 時間で最大であったが，上述のように温度の上昇によるアンモニア脱着の可能性があることから，静置 6 時間以降の NH₃-N の除去が硝化作用によるものであると考えられる。
表 - 2 各充填バーの NH₃-N および NO₂⁻-N 除去速度

<table>
<thead>
<tr>
<th>経過時間帯</th>
<th>NH₃-N除去速度 (mg NH₃-N/m²・g-dry)</th>
<th>NO₂⁻-N除去速度 (mg NO₂⁻-N/m²・g-dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 〜 6時間</td>
<td>0.22</td>
<td>0.41</td>
</tr>
<tr>
<td>6 〜 12時間</td>
<td>0.0060</td>
<td>-</td>
</tr>
<tr>
<td>12 〜 24時間</td>
<td>0.0019</td>
<td>-</td>
</tr>
<tr>
<td>24 〜 36時間</td>
<td>0.030</td>
<td>0.032</td>
</tr>
<tr>
<td>36 〜 48時間</td>
<td>-</td>
<td>0.087</td>
</tr>
</tbody>
</table>

注：数値のないところはマイナスとなり算出できなかった。

えられる。このような考えると、硝化作用による NH₃-N 除去速度の最大値は、上層・中層充填バーそれぞれについて 0.030 mg NH₃-N/ha・g-dry および 0.087 mg NH₃-N/ha・g-dry となる。NO₂⁻-N 除去速度についても上層・中層充填バーとともに静置 0 〜 6 時間で最大となっているが、静置 12 時間以降での値も示した。実験初期の減少について、原因は不明ではないが、充填バーからの揮散や好気の条件における脱臭、NO₃⁻-N を利用する微生物消費の可能性が考えられる。一方、静置 12 時間以降の減少は長時間充填バーを静置したことによって酸素が消費され、より嫌気的な状態が形成されたため、脱臭槽の活性が高まったと考えられる、このような考えから、静置 12 時間以降の脱臭作用による NO₂⁻-N 除去速度の最大値を求めると、上層・中層充填バーそれぞれについて 0.055 mg NO₂⁻-N/m²・g-dry および 0.038 mg NO₂⁻-N/m²・g-dry となる。本実験は静的条件下で行っていた。実際の脱臭槽の状況を再現してはいないが、上記の点を踏まえると、脱臭槽の状況に近い通気状態を維持することによって連続的なアンモニアの除去が進むと考えられる。また、そのような条件設定で実験を行い、さらに微生物の挙動も含めた詳細なアンモニア除去特性を把握することによって、実装置の効率的稼働に寄与するさらに有用なデータを得ることができると考えられる。

4. 結言

本研究では、畜産農業などにおける悪臭対策確立のための基礎資料を得ることを目的として、バークによるアンモニアの基本的な吸着および脱臭特性を把握するための実験的検討を行った。得られた知見は以下の通りである。

(1) 脱臭能力に直接関与する因子として、充填バークによるアンモニアの吸着量を測定した結果、湿潤状態で 2900 mg/100 g-dry、乾燥状態で 420 mg/100 g-dry という値が得られた。

(2) アンモニアは充填バークとの接触直後後に 90 〜 96% が吸着することから、吸着除去に要する接触時間は短時間であると考えられた。

(3) アンモニア吸着開始から 1 時間までの短時間スケールの実験において、充填バーク抽出液中には吸着したアンモニアの多くが NH₃-N として検出されるが、時間経過とともにやや減少する傾向にあった。この原因として、バーク中の有機成分と化学的に結合して形態変化した可能性が考えられた。

(4) アンモニア吸着開始から 48 時間までの長時間スケールの実験において、抽出液中の NH₃-N は緩やかに減少する傾向にあった。これは、硝化作用が生じたことが考えられる。また、NO₂⁻-N も次第に減少する傾向にあった。これにより、アンモニアバーク内の部分的に嫌気状態が形成され、脱臭作用が生じたことが考えられた。

(5) 硝化作用による NH₃-N 除去速度および脱臭作用による NO₂⁻-N 除去速度の最大値は、それぞれ 0.087 mg NH₃-N/ha・g-dry および 0.38 mg NO₂⁻-N/m²・g-dry であった。今後、さらに基礎的なデータを蓄積することによって、バークが持つさまざまな特性を明らかにするとともに、効率的に脱臭を継続するための影響因子、脱臭装置を設計する際の指標を把握することが必要であると考えられる。

謝辞

本研究の遂行において多大なるご協力をいただきました山口県庁の南充由氏に深甚の謝意を表します。

キーワード：バーク、アンモニア、吸着、硝化、脱臭

参考文献

1）環境省水・大気環境局大気生活環境部（2006），“平成17年度悪臭防止法施行状況調査について”
2）農林水産省農産物繊維製品課畜産環境対策部（2006），“畜産経営に与える影響に関する発表作業”
Experimental study on adsorption and removal of ammonia by bark

Takaya Higuchi, Masao Ukita, Masahiko Sekine, Tsuyoshi Imai

Department of Civil and Environmental Engineering Yamaguchi University
2-16-1, Tokiwadai, Ube, Yamaguchi, 755-8511 Japan

Abstract Fundamental characteristics of the bark as an adsorbent for ammonia removal were experimentally explored. Packing media in the bark bed at a sewage sludge composting plant, which consists of 80% of bark and 20% of compost, was used in this study. Saturated adsorption amount of ammonia under static condition was 2900 mg/100 g-dry for moist bark and 420 mg/100 g-dry for dry bark. Required contact time of ammonia with the bark for adsorption is short since 90 to 96% of ammonia is adsorbed immediately after exposure to the bark. A large part of ammonia adsorbed on the bark was detected as ammonia nitrogen in the extracted liquid of the bark and it decreased gradually since chemical reaction with organic component of the bark in the first stage and subsequently nitrification might have occurred. Nitrite and nitrate nitrogen in the extracted liquid might have been denitrified under anaerobic condition partially formed in the bark and resulted in the gradual decrease. Removal rate of ammonia nitrogen and nitrite and nitrate nitrogen reached the maximum of 0.087 mg NH₃-N/h·g-dry and 0.38 mg NO₂⁺-N/h·g-dry, respectively.

Key words : bark, ammonia, adsorption, nitrification, denitrification.