出来上がり堆肥による悪臭の除去と
堆肥の窒素成分調整

田中 章浩

畜産臭気の簡便な対策手法

家畜ふん尿に起因する臭気は大きな問題であり、特に堆肥化過程で発生する臭気はアンモニア濃度が高く、苦情の原因となることが多い。そこで、牛養の堆肥化1次発酵で揮散するアンモニアの90％を含む1、2週間発酵槽からの臭気を、出来上がり堆肥に吸着させ低コストで脱臭する方法について検討した。アンモニアは98％ほど除去され、硫化物化合物や低級脂肪酸等に関しても良好な除去を示した。脱臭に用いた堆肥は窒素濃度が増加し、窒素収効率70％の速効性の肥料となった。

1. はじめに

畜産経営に起因する苦情発生件数で悪臭関連は全体の64％（平成14年度）を占め、大きな問題となっている。臭気の多くは粪尿に起因するもので、地域住民からの苦情や環境汚染を招くことから、悪臭防止による生活環境の保全に努めなければならない。堆肥化過程では高濃度の臭気発生するが、堆肥化が好気的に進めば硫化化合物の低級脂肪酸等の発生はかなり抑制できる。しかし、堆肥化材料中のタンパク質等の分解過程でアンモニアが発生することから、アンモニアの発生自体を抑制することは困難である。アンモニアは水溶性が高く、大気中に揮散したアンモニアは雨に溶けて地上に降り注ぐことになる。土壤に吸収されたアンモニアは、土壤微生物で存在的硫化酸菌および硝酸菌によって活発され硫硝酸および硫硝酸に、環境汚染の原因となる。したがって、堆肥化で発生した高濃度臭気を低コストで脱臭し、問題解決に努めることが重要である。しかし、既存の多くの脱臭設備は設備費やランニングコストが高額であるため、農家等での脱臭装置の導入の妨げになっている（表-1）。化学脱臭では、設備費は比較的安価であるが、液液化や廃液処理のランニングコストが高くならない。また、生物脱臭はランニングコストが安価であるが、設備費が高額となる。そこで、設備費やランニングコストが比較的安価で管理作業が容易、かつ脱臭費用の回収が一部可能な、ローダー切返し方式を対象とした堆肥脱臭システムを九州沖縄農業研究センターと（財）畜産環境整備機構で開発した。

表-1 脱臭方法の特徴と管理上の留意点

<table>
<thead>
<tr>
<th>脱臭方法</th>
<th>化学脱臭</th>
<th>生物脱臭</th>
<th>堆肥脱臭（開発技術）</th>
</tr>
</thead>
<tbody>
<tr>
<td>原理</td>
<td>化学反応で除去</td>
<td>微生物の働きで無臭化</td>
<td>吸着（生物、化学）</td>
</tr>
<tr>
<td>特徴</td>
<td>化学反応そこで臭気を安定化した形で捕捉、多湿、高温ガスにも対応</td>
<td>ほとんどの臭気に対応、適切な操作条件で高濃度脱臭</td>
<td>ほとんどどの臭気に対応、脱臭効率が高い</td>
</tr>
<tr>
<td>管理内容</td>
<td>液液の調整・補充管理、廃液の的確な管理</td>
<td>水分の補給、入気濃度、温度の管理</td>
<td>維持管理は容易、定期的に材料交換が必要</td>
</tr>
<tr>
<td>設備費</td>
<td>安価</td>
<td>高価</td>
<td>安価</td>
</tr>
<tr>
<td>ランニングコスト</td>
<td>高価</td>
<td>安価</td>
<td>安価</td>
</tr>
<tr>
<td>入気NH₃濃度</td>
<td>高濃度に対応</td>
<td>200 ppm以下</td>
<td>高濃度に対応</td>
</tr>
<tr>
<td>回収N成分の利用</td>
<td>液肥として一部可</td>
<td>利用不可能</td>
<td>利用可能</td>
</tr>
<tr>
<td>NH₃回収費用（円/kgNH₃）</td>
<td>600</td>
<td>500</td>
<td>319</td>
</tr>
</tbody>
</table>

問題点

硫黄等の取り扱い、廃液処理対策、薬品代

管理は容易だが、定期的な交換作業
2. 堆肥の概略

出来上がり堆肥には気を吸着する能力があり、堆肥に気を通過させるという簡単な方法で、低コストに態のを行うことができる。牛糞とオガクス（乳牛の糞にオガクスを約20％（重量比）で混合）の堆肥化で1週間毎に切り返しを行う方式では、原材料1t（牛糞+オガクス）から約1kgのアンモニアが発生する。特に最初の2週間で全体の9割が発生することから、1、2週目発酵槽からの気を処理することで、低コストで効果的に態のを低減できる。堆肥に吸着したアンモニアは、堆肥中の微生物によって消化され無臭化される。また、態のに用いた堆肥は窒素濃度が増加することから、肥料の価値が高まり、速効性有機質肥料として減化学肥料栽培用の堆肥となる。

3. 脱臭方法（図-1, 2）

1）密閉構造とされた1, 2週目発酵槽からの態のを、発酵槽への気量に対して4倍程度の流量のターボブロワで、1次発酵槽と同様の大きさの態の吸着槽にそれぞれ導入する。

2）態の吸着槽には、堆肥化原材料（牛糞+オガクス）と同体積の出来上がり堆肥を入れ、態のを床面から導入する。システム立ち上げ時には活性炭泥を約2％混合し、その後、吸着用堆肥の入れ替え時には、使用済み堆肥を5％割程度混合する。

3）態のを送る配管内では、発酵槽からの排気温度が高く水蒸気を多く含んでいるため、アンモニア濃度800ppm程度の結露水が発生する。結露水は、夏季には堆肥化3, 4週目材の材料に、冬季には無臭化槽の堆肥

図-1 堆肥脱臭システムのフロー

図-2 堆肥脱臭システム写真
に混合し有効利用する。結露水量は材料の初期重量
1t 当たり冬期 6L/t/週、夏期 2L/t/週程度である
が、配管の断熱施工により、それぞれ、1L/t/週、0.2
L/t/週程度まで低減できる。
4) アンモニアを吸着した堆肥を無処置槽で弱く通気し
好気状態にすると、好気性の硝酸化成菌により約 1
週間でアンモニア懸浮濃度を硝酸懸浮濃度に変換され
る、さらに、数か月間好気状態にすることで有機態
懸浮濃度に変わる。無処置された堆肥は、懸浮分を多く
含まれた良質の肥料として圃場還元できる。また、再
度脱臭に利用することも可能である。

4. 脫臭能力
実験の結果、堆肥脱臭は、アンモニアおよび硫黄化合物
に対して高い除去効率を得ることができた（図－3)。
アンモニアの除去率は 97% で、季節による除去率の変
動も余りなく、年間を通じて安定した除去率が得られ
た。アンモニアの次に排出量の多いメチルメルカプトン
に関しては、プロピオン酸が若干増加したが、他の成分に
に関しては 50〜60% 以上の除去率であった。ただし、好気
発酵である堆肥化では低級脂肪酸が大きな問題となる
ケースは少ないと考えられる。
表－2 に、冬期間における堆肥量 1t 発酵部分からの
初期堆肥化材料 1t 当たりのアンモニア揮散量を示し
た。1次発酵 1週目槽～4週目槽からのアンモニア揮散
量は 925g/t（冬期）で、中でも堆肥化開始後 2週間ま
が顕著であった。堆肥脱臭で 1、2 週目発酵槽からの臭気
を吸着処理すると大気へのアンモニア揮散量は、悪臭吸
着 1週目槽 4g/t、悪臭吸着 2週目槽 5g/t、発酵槽 3 週目
9g/t および発酵槽 4 週目槽 1g/t の合計 19g/t となり、
98% という高い除去率であった。したがって、発酵槽 1、
2 週目のからの臭気を処理するだけでも、多くの場面で悪
臭問題を回避できる。また、アンモニアを吸着した堆肥
の全窒素濃度は、吸着槽への入気アンモニア濃度および
通気量の測定により推定が可能であった。全窒素濃度は
吸着槽の横断面方向では濃度差が小さいが、縦断面方向
では濃度差が大きく傾向があったので、利用の際に
は縦断面方向での均一化が必要と考えられる。

5. 吸着塩堆肥の 2 次揮散防止
堆肥脱臭に用いた堆肥は、アンモニアを高濃度に吸着
しているため、無処置して 2 次的な揮散を防止する必要
がある。堆肥を好気状態に保つことで、約 1 週間で 90%'
のアンモニア懸浮濃度が硝酸懸浮に微粒子によって変換さ
れ無処置化された。また、硝酸懸浮濃度はさらに、数か月間
好気状態にすることで一部が有機懸浮に変わった。堆
肥が好気状態に保たれていることと、含水率が 50% 程

![図－3 各懸浮物質の堆肥脱臭による平均除去率](https://example.com/image)

<table>
<thead>
<tr>
<th>項目</th>
<th>堆肥化 1 時発酵</th>
<th>大気懸散</th>
<th>惡臭吸着 1 週目槽</th>
<th>惡臭吸着 2 週目槽</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 週目</td>
<td>2 週目</td>
<td>3 週目</td>
<td>4 週目</td>
</tr>
<tr>
<td>アンモニア量° (g/t)</td>
<td>745.9</td>
<td>169.4</td>
<td>9.0</td>
<td>1.0</td>
</tr>
<tr>
<td>混合 (%)</td>
<td>80.6</td>
<td>18.3</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

°: 堆肥化初期材料 1t 当たりのアンモニア量
度と低いことから、脱臭は起こらず回収窒素成分をほぼ100%利用可能であった。ただし、高温硝酸化成蔵の増殖が進むと、脱臭と共に硝酸化成が進行することから無臭化槽を必ずしも備える必要はないと考えられる。

6. 高硝酸濃度堆肥の窒素放出特性と放出率（図-4）

こうして出来上がった高硝酸濃度堆肥の窒素放出特性を室内実験で検討した結果、高硝酸濃度堆肥の窒素形態が主に硝酸態であることからと確安以上に速効性であることが明らかになった。通常、堆肥からの窒素放出は気温や降水等の条件に影響されるが、高硝酸濃度堆肥はこれらの影響を受けにくい化学肥料的な利用が可能で、スターゲートと追肥に適した肥料という。高硝酸濃度堆肥（ベレット）のコマツナの育根への影響について検討した結果、発芽は良好で化学肥料と同等の生育を示した。さらに、高硝酸濃度堆肥の窒素放出量を１として施用した区で、作物のの硝酸態窒素濃度が有意差はなかったものの大きく低下したので、作物品質を向上させる可能性が見られた。

次に、堆肥からの窒素放出率（初期無機態窒素量+有機態窒素の無機化率）/(初期全窒素量)を明らかにした。牛販堆肥（T-N=1.8%）、混合堆肥（高硝酸濃度堆肥+牛賦堆肥（重量比1:1）、T-N=3.8%）および高硝酸濃度堆肥（T-N=5.6%）の3種類（風乾直後5g）、黒沢（風乾直後25g）を、黒沢（風乾直後25g）および遮根シートに包み圧縮して深さ10cmで9月4日から12月11日の期間埋設した。ガラス維維織維および遮根シートに包む効果を深さ10cmで9月4日から12月11日の期間埋設した。ガラス維維織維合成フィルムによる窒素放出率は、牛賦販堆肥14日に対し、高硝酸濃度堆肥70%と約5倍であった。また、混合堆肥（高硝酸態牛賦販堆肥=1:1）では60%となり、窒素放出が60日間程度持続し窒素放出パターンが緩やかになり、窒素流出が少なく確実に肥料効果のある有機質の元肥としての利用も期待できることがわかった。

7. 設備費

既存脱臭装置に比較して設備費やランニングコストが安価であり、経済的効果やランニングコストを含めて約1kgのアノモニア回収にかかる費用は319円であり、希硫酸洗浄600円、生物脱臭500円の1/2〜2/3である。牛賦100頭用堆肥槽（1600万円）における堆肥脱臭システム設備費は、432万円である。

8. 施工上の留意点（図-5）

1) 1次発酵槽の1週目と2週目の悪臭を出来上がらた堆肥に吸着させるには、1次発酵槽と同様の大きさの吸着槽を1槽必要である。1、2週目発酵槽は臭気を集めるように密閉構造とするが、壁面が湿った状態となるため、軽カール板など水分を通過しない丈夫な部材を用いて施工する。

2) 悪臭吸着槽を設置する場合には、出来るだけ発酵槽から吸着槽までの通気配管を短くし、通気配管を断熱施工することで配管内部において生じる結露水を少なくする。

3) 悪臭吸着槽における床面の通気溝部分においても結露水が生じるため、結露水を外部へ排出しタンクなどに集めることとする。

4) 臭気を発酵槽から吸着槽へ送る配管は、通気量が発酵槽通気量の4倍程度となるので管径の大きなものを通気通路を小さくする。また、臭気を吸着槽へ送るターボプロックは、連続運転するので抵抗を計算を行い、適当な消費電力のプロックを選定する。

9. 運転上の留意点

1) 悪臭吸着に用いる堆肥には、最初の立ち上昇時に活性汚泥などを2%程度添加する。2回目からは、吸着捨放と堆肥を約5%程度塩化物としたものを使用する。

2) 吸着に用いる堆肥は窒素成分が増加するので3〜4か月毎に交換する。なお、惡臭吸着に用いた堆肥の含水率は、初期に比較して若干減少する。

3) 吸着システム配管等から出てくる結露水は、アノモニアを多く含んでおり、夏期には堆肥化3、4週目の材料に、冬期には無臭化槽の堆肥などに混合して有効利用する。

図-4 土壌中における堆肥からの積算窒素放出率

*窒素放出率：(初期無機態窒素量+有機態窒素の無機化率)/(初期全窒素量)
*高硝酸濃度堆肥
*14日間程度で窒素の放出が見られる速効性
*混合堆肥
*高硝酸態と牛賦販堆肥を重量比1:1で調合
*堆肥の窒素放出率30%であるが、長期にわたる窒素放出が続く長期型
*堆肥混和：9月11日〜12月11日
*土壌温度（15cm深さ）：平均20.2℃
*最高20.7℃
*最低9.4℃

図-4 土壌中における堆肥からの積算窒素放出率
10. 高窒素濃度堆肥の肥料価値

熊本県菊池地域の堆肥価値は乾物（DM: dry matter）換算で窒素濃度2％のオガクス牛ふん堆肥で約7000円/tDMである。高窒素濃度堆肥の窒素の活性度は牛糞堆肥30％に比較して高く、70％程度となる。したがって、有効窒素1kg-N当りの価格は、牛糞堆肥1167円/kg-Nに対し、高窒素濃度堆肥では窒素濃度4%で479円/kg-N、6%で471円/kg-Nとなる。高窒素濃度堆肥は堆肥化気味の脱臭により生じたもので、この脱臭経費を堆肥販売価格に100%計上（窒素価格471～479円/kg-N）した場合（脱臭費用を耕作農家が負担）には、現在販売されている有機質肥料よりも安値であるが、化学肥料（硫安200円/kg-N、硝安347円/kg-N）よりも高くなくなってしまう。高窒素濃度堆肥は硝酸態窒素を多く含んでいるので化学肥料である硝安と比較すると、約1.4倍の価格となる。脱臭経費の相場低減化が重要であるが、高窒素濃度堆肥は高窒素濃度で堆肥で236円/kg-N、6%で239円/kg-Nとなり化学肥料の硫安250円/kg-Nよりも安値な有機質肥料となり、耕作農家と畜産家への利益を見出すことが可能となる。

また、オガクス牛糞堆肥には平均でリン2.3％tDMやカリウム2.6％tDMが含まれている。化学肥料である過塩酸石灰と塩化カルシウムでこれらの成分を施肥する場合、2008年7月の調査では成育価格はリン480円/kg-P、カリウム210円/kg-K程度である。有効窒素1kg-N相当量の牛糞堆肥に含まれる有効リンと有効カリウムの化学肥料換算価値は、窒素濃度2％、4％、6％でそれぞれ、1923円、412円、275円となる。これらから有効窒素1kg相当量堆肥に含まれる三要素肥料組成（N、P、K）の化学肥料換算価値（堆肥の有効窒素価格+リン、カリウム価格）は、窒素濃度2、4、6％でそれぞれ、3090円、891円、746円となり、これに対して、化学肥料相当価格（硝安、リン、カリウム価格）は2、4、6％でそれぞれ、2270円、759円、621円であるから、両者を比較するとそれぞれ1.36、1.17、1.20倍程度の価格となる（表-3）。

通常堆肥の流通はt単位で扱われることから、牛糞堆肥（7000円/tDM）に脱臭経費を加算した堆肥の乾物量1t当たりの価格は窒素濃度4％で13400円/tDM、6％で19800円/tDMとなる。堆肥の窒素、リン、カリウムの化学肥料換算価値は2、4、6％でそれぞれ、13617、21240、26091円/tDMであり、堆肥の販売価格は化学肥料の51～76％と安値になる（表-4）。しかし、カリウム等を過剰に含有する堆肥は利用しにくいことから、畜産家家管としはてカリウム濃度が低くなる成育バランスの良い有機堆肥の生産が重要である。また、表の堆肥価格と化学肥料換算価値の間で価格決定を行うことで、畜産家と耕種家両者にメリットを見出すことができる。

11. 作物栽培への適用性

高窒素濃度堆肥を用いた栽培試験結果では、人参、キャベツ、スイートコーン、結実レコーダーにおいて、化学肥料を使用せず元肥・追肥ともに高窒素濃度堆肥を使用しても、化学肥料と同等以上の収穫が得られ、栽培過程成分への影響も化学肥料と同等であった。したがって、高窒素
表 - 3 オガクス牛糞堆肥に窒素付加した場合の有効窒素1kg相当量の化学肥料換算価格

<table>
<thead>
<tr>
<th>項目</th>
<th>窒素濃度（%）</th>
<th>有効窒素1kg相当量</th>
<th>有効窒素1kg相当量中の有効成分</th>
<th>有効窒素1kg相当量中の肥料価値A</th>
<th>化学肥料換算価格B（円）</th>
<th>A/B（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>オガクス牛糞堆肥</td>
<td>2.0</td>
<td>166.7</td>
<td>2.30</td>
<td>3.90</td>
<td>1,167</td>
<td>1,104</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>35.7</td>
<td>0.49</td>
<td>0.84</td>
<td>479</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>23.8</td>
<td>0.33</td>
<td>0.56</td>
<td>471</td>
<td>158</td>
</tr>
</tbody>
</table>

＜: 有効窒素1kg相当量にリリン（濃度2.3%, 肥効率60%), カリウム（濃度2.6%, 肥効率90%) が含まれると仮定

表 - 4 オガクス牛糞堆肥に窒素付加した場合の堆肥化学肥料換算価格

<table>
<thead>
<tr>
<th>項目</th>
<th>窒素濃度（%）</th>
<th>堆肥価格A（円/t ос）</th>
<th>化学肥料換算価格B（円/t ос）</th>
<th>A/B（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>オガクス牛糞堆肥</td>
<td>2.0</td>
<td>7,000</td>
<td>13,617</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>13,400</td>
<td>21,240</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>19,800</td>
<td>26,091</td>
<td>76</td>
</tr>
</tbody>
</table>

＜: 有効窒素1kg相当量にリリン（濃度2.3%, 肥効率60%), カリウム（濃度2.6%, 肥効率90%) が含まれると仮定

濃度堆肥で、化学肥料の代替が可能であることがわかった。しかし、高窒素濃度堆肥が極めて速効性を示すことから、適用作物に関しては更なる検討が必要である。

12. 課題と展望

九州沖縄農業研究センターで開発した堆肥脱臭システムは、堆肥発酵中に発生するアンモニアを出来上がり堆肥に吸着させるもので、脱臭による無機懸浮性成分を多く含

有する高窒素濃度堆肥の生産が可能である。しかし、化学肥料のように肥効発現を制御するまでに至っていない。この堆肥の利用拡大のため、堆肥の窒素濃度、窒素形状、肥

効等の制御技術を確立し、高窒素濃度有機質肥料としての利用を目指す必要がある。農林水産省委託プロジェクト研究「地域活性化のためのバイオマス利用技術の開発（マテ

リアル）」において行われている。本システムは熊本県菊池市・石井牧場、合志市・合志バイオX 堆肥センター、山鹿市・山鹿バイオマスセンター、全農堆肥センターにも導入されている。今後、畜産農家への普及を図るため、システムの低コスト化をさらに図っていく予定である。

謝辞

本研究の一部は、農林水産省委託プロジェクト研究「地域活性化のためのバイオマス利用技術の開発（リアル）」において行われている、同プロジェクト研究の関係者の方々に改めて深謝致します。

キーワード：堆肥化、臭気、アンモニア、肥料、窒素

Odor Emission Control during Composting Cattle Manure by using Compost Deodorization and utilization of Nitrogen Enriched Compost

Akihiro TANAKA

National Agricultural Research Center for Kyushu Okinawa Region
Research Team for Biomass Utilization in Kyushu
2421 Suya, Koushi, Kumamoto 861-1192, Japan

Abstract Offensive odor emission associated with livestock industry is primary problem, and ammonia emissions during the composting are concentrated. This research targeted the reduction of odor emitted during composting from the fermentation reactors (1st and 2nd weeks) which emits approximately 90% of total emission by the absorption treatment using finished composts as an absorbent in low cost. Ammonia reduction rates were 98% and the adsorption treatment is effective in eliminating sulfur compounds and volatile fatty acids. The finished composts that used as absorbent content high nitrogen and the relative efficiency of high N compost showed 70%.

Key words: Composting, Odor, Ammonia, fertilizer, Nitrogen