Numerical Experiments on Cyclone Development by Interaction of Convective Heating and Baroclinic Instability

Yusuke Yakushiji (University of Tokyo) 
Masahiro Iwasaki (University of Tokyo)

1.はじめに

1960年代に気象衛星による観測が開始されると、冬季南海海
上の低気圧 200〜1000km の低気圧が頻繁に発
生していることが明らかになった。このような低気圧は、polar
low (以下 PL と略す) と呼ばれ、PL のあるものは低気圧
の熱帯低気圧のように数本のスパイラルバンドを形成してお
り 2)。また、あるものは中緯度の温帯低気圧のようにコマ状の
雲パラメータを示す 3)。このように多様な形態を持つ PL が
どのようなメカニズムによって発達するかという問題は、これ
まで多くの気象学者が興味を集めている。

PL の発達機構は、主に環境場の不安定性の線形解析によって
議論され、特に有力な候補として 2 つ発達機構が盛んに議論
されてきた。一つは熱帯低気圧のように低気圧内部の積層対流
群が放出する凝縮熱をエネルギー源とする熱的な発達機構であ
り 4)、もう一つは温帯低気圧のように環境場の水平速度勾配か
らエネルギーを引き出す発達不安定である 5)。この 2 つの発達
機構は当初は別々に議論されていたが、後に両者は同時におこるか
ようなことが重要であり、その寄与の程度は事例ごとに異なると
いう理論が提案された 6)。この理論は PL の比較的小さな水平
スケールや、半日〜1 日で急激に成長する大きな発達率の説明
に成功した。しかしながら、線形解析ではスパイラルバンドや
眼のような PL の 3 次元的内部構造を再現することや、PL
の発達に重要であるとされる凝縮熱の放出の性質を現実的に表
現することに限界がある。本研究では、近年に著しく発達した
計算機性能のもとでメソ気象衛星 2000km 以下）を
発生する 3 次元の数値モデルを利用して、対流激化と傾压安定
の相互作用による PL の発達を現実的に再現し、その発達率・
雲パラメータ・構造・エネルギー収支の特徴を解析した。

2. 数値実験の設定

図 1: エディ流の時空間分布（時間スケール 200〜1000km の低気圧が頻繁に発生していることが明らかになった。このような低気圧は、polar
low (以下 PL と略す) と呼ばれ、PL のあるものは低気圧
の熱帯低気圧のように数本のスパイラルバンドを形成してお
り 2)。また、あるものは中緯度の温帯低気圧のようにコマ状の
雲パラメータを示す 3)。このように多様な形態を持つ PL が
どのようなメカニズムによって発達するかという問題は、これ
まで多くの気象学者が興味を集めている。

PL の発達機構は、主に環境場の不安定性の線形解析によって
議論され、特に有力な候補として 2 つ発達機構が盛んに議論
されてきた。一つは熱帯低気圧のように低気圧内部の積層対流
群が放出する凝縮熱をエネルギー源とする熱的な発達機構であ
り 4)、もう一つは温帯低気圧のように環境場の水平速度勾配か
らエネルギーを引き出す発達不安定である 5)。この 2 つの発達
機構は当初は別々に議論されていたが、後に両者は同時におこるか
ようなことが重要であり、その寄与の程度は事例ごとに異なると
いう理論が提案された 6)。この理論は PL の比較的小さな水平
スケールや、半日〜1 日で急激に成長する大きな発達率の説明
に成功した。しかしながら、線形解析ではスパイラルバンドや
眼のような PL の 3 次元的内部構造を再現することや、PL
の発達に重要であるとされる凝縮熱の放出の性質を現実的に表
現することに限界がある。本研究では、近年に著しく発達した
計算機性能のもとでメソ気象衛星 2000km 以下）を
発生する 3 次元の数値モデルを利用して、対流激化と傾压安定
の相互作用による PL の発達を現実的に再現し、その発達率・
雲パラメータ・構造・エネルギー収支の特徴を解析した。

図 2: エディ流の時空間分布（時間スケール 200〜1000km の低気圧が頻繁に発生していることが明らかになった。このような低気圧は、polar
low (以下 PL と略す) と呼ばれ、PL のあるものは低気圧
の熱帯低気圧のように数本のスパイラルバンドを形成してお
り 2)。また、あるものは中緯度の温帯低気圧のようにコマ状の
雲パラメータを示す 3)。このように多様な形態を持つ PL が
どのようなメカニズムによって発達するかという問題は、これ
まで多くの気象学者が興味を集めている。

PL の発達機構は、主に環境場の不安定性の線形解析によって
議論され、特に有力な候補として 2 つ発達機構が盛んに議論
されてきた。一つは熱帯低気圧のように低気圧内部の積層対流
群が放出する凝縮熱をエネルギー源とする熱的な発達機構であ
り 4)、もう一つは温帯低気圧のように環境場の水平速度勾配か
らエネルギーを引き出す発達不安定である 5)。この 2 つの発達
機構は当初は別々に議論されていたが、後に両者は同時におこるか
ようなことが重要であり、その寄与の程度は事例ごとに異なると
いう理論が提案された 6)。この理論は PL の比較的小さな水平
スケールや、半日〜1 日で急激に成長する大きな発達率の説明
に成功した。しかしながら、線形解析ではスパイラルバンドや
眼のような PL の 3 次元的内部構造を再現することや、PL
の発達に重要であるとされる凝縮熱の放出の性質を現実的に表
現することに限界がある。本研究では、近年に著しく発達した
計算機性能のもとでメソ気象衛星 2000km 以下）を
発生する 3 次元の数値モデルを利用して、対流激化と傾压安定
の相互作用による PL の発達を現実的に再現し、その発達率・
雲パラメータ・構造・エネルギー収支の特徴を解析した。
3.3 M3（強い傾圧場）

M3 では低気圧の東側に雲塊がある（Fig.2 右）ことから、傾圧不安定波に似た性質を持っていると思われる。そこで、D3（同じ層の傾圧場の Dry 実験）で発達する純粋な傾圧不安定波と比較しながら構造を解析した。

D3（図略）と M3(Fig.3) の PL に共通して、メソメスケール（水平スケール 200–2000 km; PL 全体のスケール）の構造において、トラフ軸が高度とともに西に傾き（Fig.5 上）、トラフの東側に上昇流（Fig.5 中）と暖気（Fig.5 下）が存在するという傾圧不安定波の特徴が見られた。一方、M3 では凝結核によりメソメスケール（水平スケール 20–200 km; PL の内部構造のスケール）で低気圧が発生している、トラフ東側で上昇流の幅が狭くなる（Fig.5 中）PL 中心位置におけるトラフ東側の空気の速度（Fig.5 上）、上昇流（Fig.5 下）に伴う暖気核（Fig.5 下）の構造が見られた。この他、M3 では基本場 tác 化シーグラフからも傾圧の運動エネルギーの 30%程度が非地衛衡傾圧不安定の特徴を示した。

3.4 M1（弱い傾圧場）

M1 では、傾圧の運動エネルギーの 30% 程度が非地衛衡傾圧不安定の特徴を示した。