Uniform L^p-stability theory for the Boltzmann equation

Seung-Yeal Ha1, Seoul National University
Mitsuru Yamazaki, University of Tsukuba
Seok-Bae Yun, Seoul National University
1 FAX: 92-2-887-4694, Email: syha@smu.ac.kr

In this talk, I will present a new uniform L^p-stability theory for the spatially inhomogeneous Boltzmann equation near vacuum via the nonlinear functional approach proposed in [1, 2]. Our stability analysis is based on new nonlinear functionals which are equivalent to the p-th power of L^p-distance. The L^1-nonlinear functionals play the key role of “modulators” which make the accumulative functional be non-increasing in time t along classical solutions.

In this talk, we will present a new uniform L^p-stability theory for the spatially inhomogeneous Boltzmann equation near vacuum via the nonlinear functional approach proposed in [1, 2], more precisely, we will obtain the following accumulative L^p-type stability estimate: For any positive integer $M \geq 1$,
\[\sum_{p=1}^{M} ||f(t)-\bar{f}(t)||_p^p \leq G \sum_{p=1}^{M} ||f_0-\bar{f}_0||_p^p, \quad t \geq 0, \]
where f and \bar{f} are classical solutions corresponding to initial data f_0 and \bar{f}_0 respectively, and we used a simplified notation
\[||f(t)-\bar{f}(t)||_p \equiv ||f(t)-\bar{f}(t)||_{L^p_{x,v}}. \]

Our stability analysis is based on a new nonlinear functional $\mathcal{H}^p(t) \equiv \mathcal{H}^p(f(t),\bar{f}(t))$ with the following key properties:

- Equivalence with p-th power of L^p-distance between f and \bar{f}:
 \[||f(t)-\bar{f}(t)||_p^p \leq \mathcal{H}^p(t) \leq C_1 ||f(t)-\bar{f}(t)||_p^p, \quad t \geq 0, \]
 where C_1 is a positive constant independent of t.

- Uniform stability estimate:
 \[\mathcal{H}^p(t) + C_2 \int_0^t \Lambda^p(f(s))ds \leq \mathcal{H}^p(0), \quad t \geq 0, \]
 where C_2 and C_3 are positive constants independent of t and $\Lambda^p(f(s))$ is a generalized $(p,1)$-type collision production functional.

The L^1-nonlinear functionals in [1, 2] play the key role of “modulators” which make the accumulative functional be non-increasing in time t along classical solutions.

References