Inference on Parameters of the Beta Distribution

Yoritake Fujino and Takemi Yanagimoto

Key words: Mean square error, Bias reduction, Kullback-Leibler loss, Moment estimator, Maximum likelihood estimator, Likelihood ratio test
ベータ分布の推測

間をつくる方法を述べている。平均の検定を論じた論文は見あたらない。なお、F変量、すなわち第2種ベータ変量の白変換の分布は一般化F-分布と呼ばれるが、Prentice (1975) はこの分布を導入するとともに、その母数の尤度推定について論じている。

2 節でモーメント法や尤度法に基づく推定量などについて漸近的、数値的な検討を行う。3 節で平均の検定について検討を行う。

2. 母数の推定

ベータ分布の密度関数は

$$f(x) = x^{p-1}(1-x)^{q-1}/B(p, q), \quad 0 \leq x \leq 1$$

(2.1)

と呼ばれる。これに$B(p, q)$はベータ関数であり、ガンマ関数

$$\Gamma(p) = \int_0^\infty x^{p-1}e^{-x}dx$$

を用いて

$$B(p, q) = \Gamma(p)\Gamma(q)/\Gamma(p+q)$$

と表される。

いま,

$$\tau = p+q$$

(2.2)

とすると、その平均と分散はそれぞれ

$$\mu = p/\tau$$

(2.3)

$$\sigma^2 = \gamma/(\tau+1)$$

(2.4)

ただし,

$$\gamma = \mu(1-\mu)$$

(2.5)

で与えられる。したがってτが精度を表す母数,

$$\theta = 1/\tau$$

(2.6)

が散らばりを表す母数となる。

以下では、n 個の観測値 x_1, x_2, \cdots, x_n に基づき、母数 p, q, 平均値 μ, 精度 τ または散らばり θ を推定することを考える。

2.1. モーメント法の推定量とその修正

式 (2.4) から、母数 μ, τ に対するモーメント法の推定量を

$$\hat{\mu}_m = \bar{x}, \quad \hat{\tau}_m = \bar{x}/\bar{s}^2$$

(2.7)

として、他の母数 θ, p, q については
応用統計学 Vol. 21, No. 1 (1992)

\[\hat{\theta}_m = 1/\bar{\tau}_m \]
\[\hat{\rho}_m = \bar{\tau}_m \bar{\tau} \]
\[\bar{q}_m = \bar{\tau}_m (1 - \bar{\tau}) \]
(2.8)

とすることが考えられる。ここで \(\bar{\tau}, s^2 \) はそれぞれ標本平均と不偏分散であり,

\[\bar{\tau} = \bar{\tau}(1 - \bar{\tau}) \]

である。

\(n \) が大きいときのこれらの推定量の偏りと分散はデルタ法で評価できる。しかし、その結果はかなり複雑なものになるので、いくつかの母法の組合せに関する数値的な評価のみを2.3節に示す。ここでさらに \(\bar{\tau} \) も十分大きいものとみなすと、それらの偏りは、

\[\text{Bias}(\bar{\tau}_m) \approx 2\bar{\tau}/n \]
\[\text{Bias}(\hat{\theta}_m) \approx (7\bar{\tau} - 1)/(n\tau^3\bar{\tau}) \]
\[\text{Bias}(\hat{\rho}_m) \approx 2\rho/n \]
(2.9)

また、分散は

\[\text{var}(\bar{\tau}_m) \approx 2\tau^2/n, \quad \text{var}(\hat{\theta}_m) \approx 2/(n\tau^2) \]
\[\text{var}(\hat{\rho}_m) \approx 2\rho^2/n \]
(2.10)

と評価される。\(\bar{q}_m \) に関する評価は \(\hat{\rho}_m \) に対するもので \(p \) を \(q \) に変えればよい。

さてモーメント推定量 (2.7) の推定量は、従ってモーメント推定量を論じる限り以降では他の推定量を考慮しない。一方 \(\bar{\tau} \) の推定量は論識の余地がある。他の\(\bar{\theta}, \bar{\rho}, p, q \) の推定量は関係式 (2.8) から \(\bar{\tau} \) と \(\bar{\tau} \) の推定量を用いて求めることができる。さて推定量 \(\bar{\tau}_m \) は式 (2.9) で与えられる正の偏りをもつことに注意する。そこで以下に述べるような3通りの補正を扱う。まず単純に (2.9) の偏りを補正した次の推定量を用いることが考えられる。

\[\bar{\tau}'_m = \bar{\tau}_m/(1 + 2/n) \]
(2.11)

平均 2 乗誤差の観点からは、これをもっと縮小した次の推定量の方が有利かもしれない。

\[\bar{\tau}''_m = \bar{\tau}_m/(1 + 3/n) \]
(2.12)

同様の従来の補正を \(\hat{\theta}_m \) に対して行うことも考えられるが、その結果として得られる推定量はよい性质をもたないことがシミュレーションで示された。これは後述のように \(\hat{\theta}_m \) の偏りが小さいことによるものと考えられる。

Yanagimoto and Yamamoto (1991) は、不偏化された推定量式にもとづく推定量の有用性を示している。この場合、この推定量は次のようになる。

\[\bar{\tau}_u = \bar{\tau}_m + 1/n \]
(2.13)

他の母数 \(\bar{\theta}, \bar{\rho}, p, q \) の推定量も \(\hat{\theta}_m, \hat{\rho}_m, \bar{q}_m \) のように同様の記法を用いる。

2.2. 最尤法とそれに関連した推定量

式 (2.1) から、単一観測値の対数尤度は

\[\ell_i = (p-1) \log (x) + (q-1) \log (1-x) \]
ベータ分布の推測

\[+ \log \Gamma(\tau) - \log \Gamma(\rho) - \log \Gamma(q) \]

(2.14)

であり、有効スコアは、\(\phi(y) = d(\log \Gamma(y))/dy \) をディガンマ関数として

\[u_\rho = \partial \ell_1 / \partial \rho = \log(x) + \phi(\tau) - \phi(\rho) \]
\[u_\tau = \partial \ell_1 / \partial \tau = \log(1-x) + \phi(\tau) - \phi(q) \]

(2.15)

となる。

尤度方程式は、

\[\log G_1 - \phi(\hat{\mu}_{ML} + \hat{\rho}_{ML} + \hat{q}_{ML}) = 0 \]
\[\log G_2 - \phi(\hat{\rho}_{ML} + \hat{q}_{ML}) = 0 \]

(2.16)

となる。ここに、

\[G_1 = (\Pi x_i)^{\mu_{\nu}}, \quad G_2 = (\Pi (1-x_i))^{\mu_{\nu}} \]

(2.17)

である（Gnanadesikan et al., 1967）。

式 (2.15) から、

\[E[\log(x)] = \phi(\mu) - \phi(\tau) \]
\[E[\log(1-x)] = \phi(\rho) - \phi(\tau) \]

(2.18)

のような表現や、単一観測値に関する情報行列

\[i(\mu, \tau) = \begin{bmatrix} \phi(\mu) - \phi(\tau) & -\phi(\tau) \\ -\phi(\tau) & \phi(\rho) - \phi(\tau) \end{bmatrix} \]

(2.19)

が得られる。行列 (2.19) は \(u_\rho \) と \(u_\tau \)、あるいは \(\log(x) \) と \(\log(1-x) \) の共分散行列である。\(\mu \) と \(\tau \) についての情報行列は、

\[i(\mu, \tau) = \begin{bmatrix} \tau (\phi(\mu) + \phi(\rho) + \phi(q)) & \phi(\rho) - \phi(\tau) \\ \phi(\rho) - \phi(q) & \phi(\mu) + \phi(\rho) + \phi(q) - \tau^2 \phi(\tau) / \tau^2 \end{bmatrix} \]

(2.20)

となる。これらから、\(\hat{\mu}_{ML}, \hat{\rho}_{ML}, \hat{\rho}_{ML}, \hat{\tau}_{ML} \) の漸近分散が得られる。

\(\tau \) が大きいときは、

\[\text{var}(\hat{\mu}_{ML}) \approx \gamma / (n \tau) \]
\[\text{var}(\hat{\tau}_{ML}) \approx 2 \tau^2 / n \]
\[\text{var}(\hat{\rho}_{ML}) \approx 2 \rho^2 / n \]

(2.21)

となる。式 (2.20) と (2.21) は、\(\tau \) が大きいときのモーメント推定量と最尤推定量の漸近分散の主要部が一致することを示す。

最尤推定の偏りの漸近的な評価には Shenton & Wallington (1962) の方法が利用できる。結果はきわめて煩雑であるが、\(\tau \) が十分大きいと仮定すると、

\[\text{Bias}(\hat{\mu}_{ML}) \approx -(1-2\mu) / (2n \tau^2) \]
\[\text{Bias}(\hat{\tau}_{ML}) \approx 3 \tau / n, \quad \text{Bias}(\hat{\rho}_{ML}) \approx -1 / (n \tau) \]

(2.22)

Bias(\hat{\rho}_{ML}) \approx 3 \rho / n,
応用統計学 Vol. 21, No. 1 (1992)

となる。式 (2.22) は、r と p, q の最尤推定量が正の傾きをもち、その大きさがモーメント推定量の $3/2$ 倍であることを示す。なお、(2.22) の評価は Lau and Lau (1991) による p の最尤推定量の偏りに関するシミュレーション結果と整合する。

さて、尤度方程式をとく方法として、Gnanadesikan et al. (1967) はモーメント推定量を初期値とするニュートン法を推奨している。一方、Johnson and Kotz (1970) は、y が大きいとき $\phi(y) \approx \log(y-1/2)$ が成り立つことから、

$$
\hat{\theta}_{JK} = \frac{(1-G_2)}{2(1-G_1-G_2)} \quad \hat{q}_{JK} = \frac{(1-G_1)}{2(1-G_1-G_2)}
$$

(2.23)

を初期値とすることを示唆しているが、計算の容易さから、これをそのまま推定量として用いることが考えられる。このとき、μ と r の推定量は

$$
\hat{\mu}_{JK} = \frac{(1-G_2)}{(2-G_1-G_2)} \quad \hat{e}_{JK} = \frac{(2-G_1-G_2)}{2(1-G_1-G_2)}
$$

(2.24)

となる。これらを以下では Johnson-Kotz の推定量とよぶことにする。

2.3. 推定量の比較

この節では上述のいくつかの推定量についてより詳細な比較を行う。なお、よく知られているように、ベータ分布の形は $p < 1, q < 1$ のとき U 型、$p > 1, q > 1$ のとき単峰、$p > 1, q < 1$ あるいは $p < 1, q > 1$ のとき J 型となる。

最初に、モーメント推定量と最尤推定量の漸近的分散と偏りの $1/n$ の項の係数の正確な数値を、いくつかの p, q の組合せについて表 1 に示す。効率を表す「分散比」は、最尤推定量の分散のモーメント推定量の分散に対する比である。これから読み取れるのは次の通りである。表 1a) から、p と q がアンバランスで分布の形が歪んでいても、μ の最尤推定量の偏りはごく小さなもののが分かる。$
ho = q = 0.5$ のような極端な場合を除き、標本平均の効率はあまり悪くならない。表 1b), d) によれば、r や p の最尤推定量の偏りはかなり大きい反面、ρ や q が小さいときはモーメント推定量に対して高い効率を示す。表 1c) によれば、θ のモーメント推定量の偏りは小さい。

さらに、各推定量の挙動を比較するためのシミュレーションを行った。各シミュレーションの回数は 10,000 回である。検討した推定量は、平均 μ については標本平均と最尤推定量、r, θ, p, q についてはモーメント推定量 (2.7), (2.8) とその偏り補正 (2.11), (2.12), 不偏化された推定量方程式に基づく推定量 (2.13), 最尤推定量ならびに Johnson-Kotz の推定量 (2.23), (2.24) である。表ではこの順に結果を与えている。

このシミュレーションでは、各推定量の偏りと平均 2 乗誤差の他に、推定された分布が真の分布にどの程度近いかを評価するため、カルバック・ライブラリー・リスクを求めた。これはカルバック・ライブラリー・リスクの平均である。一般に、観測値 $x=(x_1, \ldots, x_n)$ に基づく推定値 $\hat{\theta} = \hat{\theta}(x)$ のカルバック・ライブラリー・リスクは、観測値の分布の密度関数を $f(z; \theta)$ とするとき、

$$
KL(\theta ; \theta) = 2 \int \log \frac{\prod f(z_i; \hat{\theta})}{\prod f(z_i; \theta)} \prod f(z_i; \hat{\theta}) dz_i
$$

(2.25)

で定義され、ベータ分布の推定の場合は
ベータ分布の推測

表1. モーメント推定量と尤度推定量の漸近的な分散と偏りのn^{-1}の係数

a) μの推定量の漸近分散と偏りのn^{-1}の係数

<table>
<thead>
<tr>
<th>p, q</th>
<th>モーメント 分散</th>
<th>MLE 分散（偏り）</th>
<th>分散比</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>.13E+0</td>
<td>.10E+0 (.06E+0)</td>
<td>811</td>
</tr>
<tr>
<td>0.5, 2</td>
<td>.46E-1</td>
<td>.43E-1 (-.36E-1)</td>
<td>939</td>
</tr>
<tr>
<td>1, 1</td>
<td>.83E-1</td>
<td>.76E-1 (.00E+0)</td>
<td>912</td>
</tr>
<tr>
<td>2, 3</td>
<td>.40E-1</td>
<td>.39E-1 (-.29E-2)</td>
<td>979</td>
</tr>
<tr>
<td>1, 9</td>
<td>.82E-2</td>
<td>.81E-2 (-.46E-2)</td>
<td>994</td>
</tr>
<tr>
<td>3, 7</td>
<td>.19E-1</td>
<td>.19E-1 (-.29E-2)</td>
<td>994</td>
</tr>
<tr>
<td>10, 90</td>
<td>.89E-3</td>
<td>.89E-3 (-.28E-4)</td>
<td>1000</td>
</tr>
<tr>
<td>30, 70</td>
<td>.21E-2</td>
<td>.21E-2 (-.14E-4)</td>
<td>1000</td>
</tr>
</tbody>
</table>

b) τの推定量の漸近分散と偏りのn^{-1}の係数

<table>
<thead>
<tr>
<th>p, q</th>
<th>モーメント 分散（偏り）</th>
<th>MLE 分散（偏り）</th>
<th>分散比</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>.20E+1 (.00E+0)</td>
<td>.12E+1 (.24E+1)</td>
<td>608</td>
</tr>
<tr>
<td>0.5, 2</td>
<td>.18E+2 (.54E+1)</td>
<td>.12E+2 (.80E+1)</td>
<td>698</td>
</tr>
<tr>
<td>1, 1</td>
<td>.72E+1 (.14E+1)</td>
<td>.56E+1 (.52E+1)</td>
<td>782</td>
</tr>
<tr>
<td>2, 3</td>
<td>.46E+2 (.69E+1)</td>
<td>.42E+2 (.14E+2)</td>
<td>912</td>
</tr>
<tr>
<td>1, 9</td>
<td>.34E+3 (.36E+2)</td>
<td>.22E+3 (.33E+2)</td>
<td>649</td>
</tr>
<tr>
<td>3, 7</td>
<td>.20E+3 (.18E+2)</td>
<td>.19E+3 (.30E+2)</td>
<td>914</td>
</tr>
<tr>
<td>10, 90</td>
<td>.22E+5 (.22E+3)</td>
<td>.20E+5 (.30E+3)</td>
<td>917</td>
</tr>
<tr>
<td>30, 70</td>
<td>.20E+5 (.20E+3)</td>
<td>.20E+5 (.30E+3)</td>
<td>990</td>
</tr>
</tbody>
</table>

c) θの推定量の漸近分散と偏りのn^{-1}の係数

<table>
<thead>
<tr>
<th>p, q</th>
<th>モーメント 分散（偏り）</th>
<th>MLE 分散（偏り）</th>
<th>分散比</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>.20E+1 (.20E+1)</td>
<td>.12E+1 (-.12E+1)</td>
<td>608</td>
</tr>
<tr>
<td>0.5, 2</td>
<td>.46E+0 (.29E+0)</td>
<td>.32E+0 (-.48E+0)</td>
<td>698</td>
</tr>
<tr>
<td>1, 1</td>
<td>.45E+0 (.55E+0)</td>
<td>.35E+0 (-.59E+0)</td>
<td>782</td>
</tr>
<tr>
<td>2, 3</td>
<td>.74E-1 (.97E-1)</td>
<td>.68E-1 (-.22E+0)</td>
<td>912</td>
</tr>
<tr>
<td>1, 9</td>
<td>.34E-1 (-.18E-1)</td>
<td>.22E-1 (-.10E+0)</td>
<td>649</td>
</tr>
<tr>
<td>3, 7</td>
<td>.20E-1 (-.22E-1)</td>
<td>.19E-1 (-.11E+0)</td>
<td>914</td>
</tr>
<tr>
<td>10, 90</td>
<td>.22E-3 (-.38E-3)</td>
<td>.20E-3 (-.10E-1)</td>
<td>917</td>
</tr>
<tr>
<td>30, 70</td>
<td>.20E-3 (-.22E-3)</td>
<td>.20E-3 (-.10E-1)</td>
<td>990</td>
</tr>
</tbody>
</table>

d) ρの推定量の漸近分散と偏りのn^{-1}の係数

<table>
<thead>
<tr>
<th>p, q</th>
<th>モーメント 分散（偏り）</th>
<th>MLE 分散（偏り）</th>
<th>分散比</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>.63E+0 (.00E+0)</td>
<td>.41E+0 (.12E+1)</td>
<td>648</td>
</tr>
<tr>
<td>0.5, 2</td>
<td>.67E+0 (.74E+0)</td>
<td>.35E+0 (.11E+1)</td>
<td>518</td>
</tr>
<tr>
<td>1, 1</td>
<td>.21E+1 (.70E+0)</td>
<td>.17E+1 (.26E+1)</td>
<td>803</td>
</tr>
<tr>
<td>2, 3</td>
<td>.79E+1 (.28E+1)</td>
<td>.71E+1 (.54E+1)</td>
<td>900</td>
</tr>
<tr>
<td>1, 9</td>
<td>.29E+1 (.29E+1)</td>
<td>.16E+1 (.25E+1)</td>
<td>535</td>
</tr>
<tr>
<td>3, 7</td>
<td>.18E+2 (.51E+1)</td>
<td>.16E+2 (.85E+1)</td>
<td>900</td>
</tr>
<tr>
<td>10, 90</td>
<td>.21E+3 (.21E+2)</td>
<td>.19E+3 (.30E+2)</td>
<td>914</td>
</tr>
<tr>
<td>30, 70</td>
<td>.16E+4 (.59E+2)</td>
<td>.18E+4 (.90E+2)</td>
<td>990</td>
</tr>
<tr>
<td>p, q</td>
<td>標本平均 MSE</td>
<td>MLE MSE（偏り）</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>0.5，0.5</td>
<td>0.12E-1</td>
<td>0.11E-1（-0.77E-3）</td>
<td></td>
</tr>
<tr>
<td>0.5，2</td>
<td>0.46E-2</td>
<td>0.43E-2（-0.33E-2）</td>
<td></td>
</tr>
<tr>
<td>1，1</td>
<td>0.83E-2</td>
<td>0.80E-2（-0.12E-3）</td>
<td></td>
</tr>
<tr>
<td>2，3</td>
<td>0.40E-2</td>
<td>0.39E-2（-0.21E-3）</td>
<td></td>
</tr>
<tr>
<td>1，9</td>
<td>0.82E-3</td>
<td>0.81E-3（-0.21E-3）</td>
<td></td>
</tr>
<tr>
<td>10，90</td>
<td>0.89E-4</td>
<td>0.89E-4（-0.71E-4）</td>
<td></td>
</tr>
<tr>
<td>30，70</td>
<td>0.21E-3</td>
<td>0.21E-3（-0.12E-3）</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>標本平均 MSE</th>
<th>MLE MSE（偏り）</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.38E-2</td>
<td>0.38E-2（-0.34E-3）</td>
</tr>
<tr>
<td>10</td>
<td>0.19E-2</td>
<td>0.19E-2（-0.93E-4）</td>
</tr>
<tr>
<td>20</td>
<td>0.97E-3</td>
<td>0.96E-3（-0.51E-3）</td>
</tr>
<tr>
<td>50</td>
<td>0.38E-3</td>
<td>0.38E-3（-0.12E-3）</td>
</tr>
</tbody>
</table>

表3. tの推定値の偏り

<table>
<thead>
<tr>
<th>p, q</th>
<th>f_n (2.7)</th>
<th>f'_n (2.11)</th>
<th>f''_n (2.12)</th>
<th>f''_n (2.13)</th>
<th>MLE</th>
<th>$J-K$ (2.24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5，0.5</td>
<td>0.06</td>
<td>-0.12</td>
<td>-0.18</td>
<td>0.16</td>
<td>0.35</td>
<td>0.86</td>
</tr>
<tr>
<td>0.5，2</td>
<td>1.06</td>
<td>0.46</td>
<td>0.24</td>
<td>1.16</td>
<td>1.22</td>
<td>2.20</td>
</tr>
<tr>
<td>1，1</td>
<td>0.28</td>
<td>-0.10</td>
<td>-0.25</td>
<td>0.38</td>
<td>0.75</td>
<td>1.15</td>
</tr>
<tr>
<td>2，3</td>
<td>1.08</td>
<td>0.07</td>
<td>-0.32</td>
<td>1.18</td>
<td>2.01</td>
<td>2.35</td>
</tr>
<tr>
<td>1，9</td>
<td>4.46</td>
<td>2.05</td>
<td>1.12</td>
<td>4.56</td>
<td>4.63</td>
<td>6.05</td>
</tr>
<tr>
<td>10，90</td>
<td>29.99</td>
<td>8.32</td>
<td>-0.01</td>
<td>30.09</td>
<td>43.16</td>
<td>44.05</td>
</tr>
<tr>
<td>30，70</td>
<td>28.53</td>
<td>7.11</td>
<td>-1.13</td>
<td>28.63</td>
<td>43.04</td>
<td>43.36</td>
</tr>
</tbody>
</table>

$b)$ $(p, q)=(3, 7)$

$KL((\hat{p}, \hat{q}); (p, q)) = 2n[(\hat{p} - p)(\hat{q} - q) (\hat{p}(\hat{q}) - \hat{q}(\hat{p}) + (q - q)(\hat{q}(\hat{p}) - \hat{p}(\hat{q})) - \log\Gamma(\hat{p}) - \log\Gamma(\hat{q}) + \log\Gamma(p) + \log\Gamma(q) - \log\Gamma(\tau)]$ (2.26)

となる。 (2.25) の右辺の定数 2 は対数尤度比検定統計量との対応を容易にするためである。

シミュレーション結果を表2から表9に示す。表2からμの尤度推定値の偏りはきわめて小さいことが分かる。標本平均と尤度推定値の平均2乗誤差にはほとんど差はない。表3はτのモーメント推定値の偏りが大きく、偏り補正 (2.11), (2.12) がうまく機能していることを示している。尤度推定値やJohnson-Kotz の推定値の偏りはモーメント推定値よりもさらに大きい。表4から偏り補正 (2.12) の平均2乗誤差が概して最も小さくなることが分かる。表7,8から、pの推定についても τの推定と同じことが結論できる。
ベータ分布の推測

表4. \(\tau\)の推定量の平均2乗誤差

(a) \(n=10\)

<table>
<thead>
<tr>
<th>(p, q)</th>
<th>(\bar{r}_{m}) (2.7)</th>
<th>(\bar{r}_{m}^{*}) (2.11)</th>
<th>(\bar{r}_{m}^{**}) (2.12)</th>
<th>(\bar{r}_{m}^{***}) (2.13)</th>
<th>MLE</th>
<th>(J-K) (2.24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>.48E+0 .35E+0 .32E+0 .51E+0 .59E+0 .12E+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5, 2</td>
<td>.11E+2 .69E+1 .57E+1 .11E+2 .84E+1 .13E+2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 1</td>
<td>.20E+1 .13E+1 .12E+1 .21E+1 .28E+1 .35E+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>.16E+1 .10E+2 .86E+1 .16E+2 .21E+2 .23E+2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 9</td>
<td>.12E+3 .75E+2 .61E+2 .12E+3 .12E+3 .13E+3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10, 90</td>
<td>.76E+4 .47E+4 .40E+4 .76E+4 .10E+5 .10E+5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 70</td>
<td>.74E+4 .46E+4 .39E+4 .74E+4 .10E+5 .10E+5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) \((p, q)\)=\((3, 7)\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\bar{r}_{m}) (2.7)</th>
<th>(\bar{r}_{m}^{*}) (2.11)</th>
<th>(\bar{r}_{m}^{**}) (2.12)</th>
<th>(\bar{r}_{m}^{***}) (2.13)</th>
<th>MLE</th>
<th>(J-K) (2.24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.18E+4 .87E+3 .66E+3 .18E+4 .28E+4 .28E+4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.70E+2 .44E+2 .37E+2 .71E+2 .93E+2 .96E+2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>.18E+2 .14E+2 .13E+2 .18E+2 .20E+2 .22E+2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>.50E+1 .45E+1 .44E+1 .50E+1 .51E+1 .57E+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表5. \(\theta\)の推定量の偏り

(a) \(n=10\)

<table>
<thead>
<tr>
<th>(p, q)</th>
<th>(\hat{\theta}_{m})</th>
<th>(\hat{\theta}_{m}^{*})</th>
<th>(\hat{\theta}_{m}^{**})</th>
<th>(\hat{\theta}_{m}^{***})</th>
<th>MLE</th>
<th>(J-K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>.03 0.59 0.72 0.12</td>
<td>-0.12</td>
<td>-0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5, 2</td>
<td>.04 0.12 0.17 0.01</td>
<td>-0.05</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 1</td>
<td>.07 0.19 0.24 0.03</td>
<td>-0.06</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>.01 0.05 0.07 0.01</td>
<td>-0.02</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 9</td>
<td>-0.002 0.018 0.028 -0.003</td>
<td>-0.010</td>
<td>-0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10, 90</td>
<td>-0.0000 0.0020 0.0030 -0.0000</td>
<td>-0.0010</td>
<td>-0.0011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 70</td>
<td>0.0000 0.0020 0.0030 -0.0000</td>
<td>-0.0010</td>
<td>-0.0011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) \((p, q)\)=\((3, 7)\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\hat{\theta}_{m})</th>
<th>(\hat{\theta}_{m}^{*})</th>
<th>(\hat{\theta}_{m}^{**})</th>
<th>(\hat{\theta}_{m}^{***})</th>
<th>MLE</th>
<th>(J-K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.006 0.049 0.070 0.003</td>
<td>-0.021</td>
<td>-0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.002 0.023 0.033 0.001</td>
<td>-0.011</td>
<td>-0.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.0013 0.0114 0.0165 0.0007</td>
<td>-0.0052</td>
<td>-0.0088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.0004 0.0045 0.0065 0.0002</td>
<td>-0.0022</td>
<td>-0.0057</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\theta\)の推定については、表5, 6から、モーメント推定量の偏りが大きくなく、\(\tau\)に対する偏り補正が加えても平均2乗誤差を増加させることができることが示される。一方、\(\hat{\theta}\)は殆ど不偏であることが分かれる。\(\theta\)の推定で最も小さな平均2乗誤差を与えるのは最尤推定量またはJohnson-Kotzの推定量である。

2.2節で行ったモーメント推定量と最尤推定量の平均2乗誤差の漸近的評価は、\(n\)が大きいと
きシミュレーション結果と良好な一致を示している。偏りについては、小さなnに対しても短範
な母数に関して良好な一致を示している。
表9によれば、カルバック・ライブラリー・リスクについてもθの推定のときと同じく最尤推定
量またはJohnson-Kotzの推定量が最も小さな値を与える。ここで表6の場合と同様にJohnson-
Kotzの推定量の方が最尤推定量よりもかなり多くの場合に良い結果を与えることを注意する。前
者が後者の初期値として導入されたことを考えるとこの結果は注目される。τの値が大きいときは

<table>
<thead>
<tr>
<th>表6. θの推定量の平均 2乗誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a)$ $n=10$</td>
</tr>
<tr>
<td>p, q</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>0.5, 0.5</td>
</tr>
<tr>
<td>0.5, 2</td>
</tr>
<tr>
<td>1, 1</td>
</tr>
<tr>
<td>2, 3</td>
</tr>
<tr>
<td>1, 9</td>
</tr>
<tr>
<td>10, 90</td>
</tr>
<tr>
<td>30, 70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表7. pの推定量の偏り</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a)$ $n=10$</td>
</tr>
<tr>
<td>p, q</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>0.5, 0.5</td>
</tr>
<tr>
<td>0.5, 2</td>
</tr>
<tr>
<td>1, 1</td>
</tr>
<tr>
<td>2, 3</td>
</tr>
<tr>
<td>1, 9</td>
</tr>
<tr>
<td>10, 90</td>
</tr>
<tr>
<td>30, 70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) $(p, q)=(3, 7)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>50</td>
</tr>
</tbody>
</table>

23
表8. p の推定量の平均 2 乗誤差

<table>
<thead>
<tr>
<th>p, q</th>
<th>\hat{p}_m</th>
<th>\hat{p}_m^*</th>
<th>\hat{p}_m^*</th>
<th>\hat{p}_u</th>
<th>MLE</th>
<th>$J-K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>0.15</td>
<td>0.11</td>
<td>0.10</td>
<td>0.16</td>
<td>0.19</td>
<td>0.37</td>
</tr>
<tr>
<td>0.5, 2</td>
<td>0.16</td>
<td>0.10</td>
<td>0.09</td>
<td>0.17</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>1, 1</td>
<td>0.58</td>
<td>0.39</td>
<td>0.35</td>
<td>0.60</td>
<td>0.80</td>
<td>0.99</td>
</tr>
<tr>
<td>2, 3</td>
<td>2.45</td>
<td>1.59</td>
<td>1.37</td>
<td>2.49</td>
<td>3.40</td>
<td>3.61</td>
</tr>
<tr>
<td>1, 9</td>
<td>0.71</td>
<td>0.43</td>
<td>0.36</td>
<td>0.72</td>
<td>0.70</td>
<td>0.78</td>
</tr>
<tr>
<td>10, 90</td>
<td>72.30</td>
<td>44.94</td>
<td>37.83</td>
<td>72.36</td>
<td>95.15</td>
<td>95.87</td>
</tr>
<tr>
<td>30, 70</td>
<td>659.10</td>
<td>411.87</td>
<td>347.38</td>
<td>659.62</td>
<td>888.89</td>
<td>891.33</td>
</tr>
</tbody>
</table>

b) $(p, q) = (3, 7)$

<table>
<thead>
<tr>
<th>n</th>
<th>\hat{p}_m</th>
<th>\hat{p}_m^*</th>
<th>\hat{p}_m^*</th>
<th>\hat{p}_u</th>
<th>MLE</th>
<th>$J-K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>145.6</td>
<td>71.7</td>
<td>54.3</td>
<td>145.9</td>
<td>233.8</td>
<td>234.7</td>
</tr>
<tr>
<td>10</td>
<td>5.88</td>
<td>3.71</td>
<td>3.16</td>
<td>5.93</td>
<td>7.89</td>
<td>8.14</td>
</tr>
<tr>
<td>20</td>
<td>1.54</td>
<td>1.20</td>
<td>1.12</td>
<td>1.55</td>
<td>1.76</td>
<td>1.87</td>
</tr>
<tr>
<td>50</td>
<td>0.44</td>
<td>0.40</td>
<td>0.39</td>
<td>0.44</td>
<td>0.44</td>
<td>0.49</td>
</tr>
</tbody>
</table>

表9. カルバック・ライブラー・リスク, モーメント法では μ の推定量は \bar{x}

a) $n=10$

<table>
<thead>
<tr>
<th>p, q</th>
<th>$\bar{\xi}_m$ (2.7)</th>
<th>$\bar{\xi}_m^*$ (2.11)</th>
<th>$\bar{\xi}_m^*$ (2.12)</th>
<th>$\bar{\xi}_u$ (2.13)</th>
<th>MLE</th>
<th>$J-K$ (2.23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 0.5</td>
<td>5.72</td>
<td>7.82</td>
<td>9.08</td>
<td>3.76</td>
<td>2.19</td>
<td>2.92</td>
</tr>
<tr>
<td>0.5, 2</td>
<td>3.84</td>
<td>4.77</td>
<td>5.42</td>
<td>3.43</td>
<td>2.22</td>
<td>2.54</td>
</tr>
<tr>
<td>1, 1</td>
<td>3.27</td>
<td>4.36</td>
<td>5.09</td>
<td>2.84</td>
<td>2.21</td>
<td>2.32</td>
</tr>
<tr>
<td>2, 3</td>
<td>2.48</td>
<td>3.03</td>
<td>3.45</td>
<td>2.39</td>
<td>2.19</td>
<td>2.14</td>
</tr>
<tr>
<td>1, 9</td>
<td>2.76</td>
<td>3.10</td>
<td>3.42</td>
<td>2.72</td>
<td>2.20</td>
<td>2.14</td>
</tr>
<tr>
<td>10, 90</td>
<td>2.20</td>
<td>2.39</td>
<td>2.61</td>
<td>2.19</td>
<td>2.20</td>
<td>2.19</td>
</tr>
<tr>
<td>30, 70</td>
<td>2.13</td>
<td>2.35</td>
<td>2.56</td>
<td>2.16</td>
<td>2.20</td>
<td>2.20</td>
</tr>
</tbody>
</table>

b) $(p, q) = (3, 7)$

<table>
<thead>
<tr>
<th>n</th>
<th>$\bar{\xi}_m$ (2.7)</th>
<th>$\bar{\xi}_m^*$ (2.11)</th>
<th>$\bar{\xi}_m^*$ (2.12)</th>
<th>$\bar{\xi}_u$ (2.13)</th>
<th>MLE</th>
<th>$J-K$ (2.23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.66</td>
<td>3.41</td>
<td>4.02</td>
<td>2.57</td>
<td>2.47</td>
<td>2.44</td>
</tr>
<tr>
<td>10</td>
<td>2.33</td>
<td>2.68</td>
<td>2.99</td>
<td>2.29</td>
<td>2.20</td>
<td>2.17</td>
</tr>
<tr>
<td>20</td>
<td>2.25</td>
<td>2.43</td>
<td>2.60</td>
<td>2.23</td>
<td>2.12</td>
<td>2.09</td>
</tr>
<tr>
<td>50</td>
<td>2.16</td>
<td>2.23</td>
<td>2.30</td>
<td>2.15</td>
<td>2.05</td>
<td>2.04</td>
</tr>
</tbody>
</table>

モーメント推定量もこれに近い値を与える。

更に表9から, n を一定とするとき, 最尤推定量のカルバック・ライブラー・リスクの値が広範な母数に対してきわめて安定していることが観察される。なお, 正規分布の平均と分散の推定に最尤法を用いるとき, カルバック・ライブラー・リスクは,
応用統計学 Vol. 21, No. 1 (1992)

\[KLR = \mathbb{E}\{KL((\mu, \sigma^2); (\mu, \sigma^2)) \} = n\{\log(n/2) - \psi((n-1)/2)\} \quad (2.27) \]

となる。この値をいくつかの \(n \) について表 10 に示す。これらが表 9 a), b) で示した推定量の値にきわめて近いことは興味深い。

<table>
<thead>
<tr>
<th>(n)</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>リスク (2.27)</td>
<td>2.47</td>
<td>2.21</td>
<td>2.10</td>
<td>2.04</td>
<td>2.02</td>
</tr>
</tbody>
</table>

以上から, \(\mu \) の推定には简便さから標本平均が良く, \(\tau \) と \(p \) の推定にはモーメント推定量の偏り補正（2.12）が図られる。一方 \(\theta \) の推定には偏りを重視すると不偏化された推定量程式に基づく \(\bar{\theta}_n \) の使用が，平均 2 乘誤差を規準とすると尤度推定量または Johnson-Kotz の推定量の使用が図られる。\(\sim \) の 2 推定量によって推定された分布は，カルバック・ライブラリー・リスクの意味で真の分布に近い。

3. 平均の検定

仮説 \(\mu=\mu_0 \) を対立仮説 \(\mu \neq \mu_0 \) に対して有意水準 \(\alpha \) で検定する方法として，普通に考えられるのは \(t \) 検定と尤度比検定である。\(t \) 検定ではベータ分布であることを無視して正規分布と仮定している。後者については，\(L(\mu) \) を尤度として

表 11. 平均の検定の第 1 種の過誤の確率

a) \(n=10 \)

<table>
<thead>
<tr>
<th>(p, q)</th>
<th>(t) 検定</th>
<th>尤度比検定 (3.1)</th>
<th>尤度比検定 (3.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>.05</td>
<td>.10</td>
<td>.01</td>
</tr>
<tr>
<td>0.5, 0.5</td>
<td>.014</td>
<td>.055</td>
<td>.101</td>
</tr>
<tr>
<td>0.5, 2</td>
<td>.042</td>
<td>.089</td>
<td>.133</td>
</tr>
<tr>
<td>1, 1</td>
<td>.014</td>
<td>.054</td>
<td>.101</td>
</tr>
<tr>
<td>1, 5</td>
<td>.030</td>
<td>.077</td>
<td>.124</td>
</tr>
<tr>
<td>2, 3</td>
<td>.013</td>
<td>.053</td>
<td>.102</td>
</tr>
<tr>
<td>2, 5</td>
<td>.016</td>
<td>.059</td>
<td>.107</td>
</tr>
<tr>
<td>2, 10</td>
<td>.021</td>
<td>.066</td>
<td>.114</td>
</tr>
<tr>
<td>5, 10</td>
<td>.011</td>
<td>.053</td>
<td>.103</td>
</tr>
</tbody>
</table>

b) \((p, q)=(3, 7)\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(t) 検定</th>
<th>尤度比検定 (3.1)</th>
<th>尤度比検定 (3.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>.05</td>
<td>.10</td>
<td>.01</td>
</tr>
<tr>
<td>10</td>
<td>.013</td>
<td>.054</td>
<td>.103</td>
</tr>
<tr>
<td>30</td>
<td>.011</td>
<td>.050</td>
<td>.100</td>
</tr>
<tr>
<td>50</td>
<td>.011</td>
<td>.051</td>
<td>.101</td>
</tr>
</tbody>
</table>

25
ベータ分布の推測

$$2 \log \frac{L(\mu)}{L(\mu_0)} \geq \chi^2(1)$$

(3.1)

のとき仮説を棄却するのが通常の近似法である。ここで、$$\chi^2(1)$$ は自由度 1 のカイ 2 乗検定の上側 $$\alpha$$ 点を示す。しかし、表 11 に与えた各回数 40,000 回のシミュレーション結果によると、これら両者の検定の第 1 種の過誤の確率は名目値をもって上回る。ここで尤度比検定の場合期待値の大きさが標本サイズののみに依存しているようにみえることが注目される。

正規分布の平均の検定では、尤度比検定統計量は

$$2 \log \frac{L(\mu)}{L(\mu_0)} = n \log \frac{\sum (x_i - \mu_0)^2}{\sum (x_i - \bar{x})^2} = n \log \left[1 + \frac{T^2}{n-1} \right],$$

（ただし、$$T^2 = n(\bar{x} - \mu_0)^2 / \left(\sum (x_i - \bar{x})^2 / (n-1) \right)$$ と表される。いま、$$p, q$$ の値が大きければ、ベータ分布は正規分布で近似される。したがって、

$$2 \log \frac{L(\mu)}{L(\mu_0)} \geq n \log \left[1 + F_p(1, n-1) / (n-1) \right]$$

(3.2)

をこの場合の棄却域とすることが考えられる。ここで、$$F_p(1, n-1)$$ は自由度 1、$$n-1$$ の $$F$$ 分布の上側 $$\alpha$$ 点を示す。表 11 によれば、この検定の第 1 種の過誤の確率は、$$p, q$$ 値が小さいとき大きめ目値にきわめて近くなっている。以上から、ベータ分布の平均の検定には尤度比検定に(3.2)の $$F$$ 近似を用いることが推奨される。

謝辞 この問題を扱うきっかけを焼いた木内知子、木田厚瑞両博士に感謝します。また、2 人の査読者には原稿の不備を指摘して頂きましたことに対して厚くお礼します。

参考文献

本紙は、木内 厚、田口隆彦、木田厚瑞（1991)。幼若ラットにおける肺葉切除後の代償発育：肺間隔について。日本胸部疾患学会雑誌 29 巻増刊号、376。

著者連絡先：〒108 港区南麻布 4-6-7 統計数理研究所

この論文は藤野氏の遺稿となりました。ご冥福をお祈り致します（関連記事 p.49)。