ケーシングフロウガスリフトの現場計算

石塚英四郎

（昭和38年7月23日受理）

Field Calculation of Annulus Flow Gas Lift

By

Eishiro ISHIZUKA

Abstract: This article describes the field calculation of gas lift. The author applies the average experimental value which was obtained from many experiments in Niigata Gas Field.

I 概説

気体と水の混合流体の研究はわが国においても、秋田大学、帝国石油その他でいろいろ実験され、理論式も考察されてきた。しかしそれらはそのままで計算が煩雑で現場計算用に適しなかった。

本文は水溶性天然ガス採収装置を設計する場合、所要ガス量を現場において、図表を用いて計算できるデータになるよう述べた。計算基礎は後述するが、計算はガス注入点より上実験によって求めたデータを使用し、下はスリッパージ損失のない普通の流体の流れとして行なった。

II 所要ガス量の算出

所要ガス量は Fig.1, 2, 3および4より求める。それらの図は、ケーシングが8寸Cリフト管が2寸Tのケーシングフロイの場合である。縦軸はガス注入点より上のガスと水との比で、ガスはガス層ガスと注入ガスの和である。横軸は動水位を表している。

動水位は静止水位と、坑底圧力降下と、ガス層からガス注入点までの圧力損失の和であると見解した。

ガス層からガス注入点までの圧力損失は、坑底圧力降下・ガス層 G.L.R．管摩擦損失ならびに水の比重に影響する。計算する場合、坑底圧力降下・ガス層 G.L.R．ならびに管摩擦損失に関連した値を圧力勾配因子にとし、表をあらかじめ作成しておく、比重ρとの値として計算すると便利である。すなわち圧力損失水頭

$$\rho^2 (\alpha h_1 + \alpha h_2 + \alpha h_3 + \cdots) - H \cdots (1)$$

ここに ρ は生産水の比重

α_i は油の圧力勾配係数、以下同じ

$H = \sum (h_1 + h_2 + h_3 + \cdots)$ ガス層からガス注入点までの距離，m
Table 1-a

![Table 1-a](image)
ケーシングフロウガスリフトの現地計算

<table>
<thead>
<tr>
<th>ケーシングフロウガスリフトの現地計算</th>
<th>C.P. (内径164mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>表1-b 压力勾配ファクター</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G.L.R. 17</th>
<th>G.L.R. 17</th>
<th>G.L.R. 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>表面温度 2,000</td>
<td>5,000</td>
<td>10,000</td>
</tr>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>3,000</td>
</tr>
<tr>
<td>1.008</td>
<td>1.008</td>
<td>1.008</td>
</tr>
</tbody>
</table>

8 1/2 C - 7 C - 5 1/2 C の圧力勾配ファクターを Table 1 に示す。（1）式の値が負の時はガスパブルのため圧力勾配が1,000 kgf/m2 以下より小さい場合になる。

計算例

条件

<table>
<thead>
<tr>
<th>ケーシングプログラム</th>
<th>500 m まで 8 1/2 C</th>
<th>500 m 以上 7 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産水量</td>
<td>2,000 kl/day</td>
<td></td>
</tr>
<tr>
<td>生産水量</td>
<td>1,000 kl/day</td>
<td></td>
</tr>
<tr>
<td>生産水貯貯</td>
<td>50 m</td>
<td></td>
</tr>
</tbody>
</table>

リフト管

| 2 1/2 T 250m |
| 1,500 m |

ガス層位置

| 計算 |
|------------|-----------------|
| (1)式を用いて | (28) |
Table 1-c 表面積度

<table>
<thead>
<tr>
<th>水量</th>
<th>深度</th>
<th>K/L/h</th>
<th>1.000</th>
<th>2.000</th>
<th>3.000</th>
<th>4.000</th>
<th>5.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.954</td>
<td>0.981</td>
<td>1.010</td>
<td>1.040</td>
<td>1.069</td>
<td>1.099</td>
<td>1.129</td>
</tr>
<tr>
<td>375</td>
<td>0.958</td>
<td>1.005</td>
<td>1.035</td>
<td>1.064</td>
<td>1.093</td>
<td>1.122</td>
<td>1.151</td>
</tr>
<tr>
<td>500</td>
<td>0.999</td>
<td>1.015</td>
<td>1.046</td>
<td>1.075</td>
<td>1.104</td>
<td>1.133</td>
<td>1.162</td>
</tr>
<tr>
<td>625</td>
<td>1.003</td>
<td>1.022</td>
<td>1.052</td>
<td>1.082</td>
<td>1.111</td>
<td>1.140</td>
<td>1.169</td>
</tr>
<tr>
<td>750</td>
<td>1.007</td>
<td>1.024</td>
<td>1.056</td>
<td>1.086</td>
<td>1.116</td>
<td>1.145</td>
<td>1.175</td>
</tr>
<tr>
<td>1,150</td>
<td>1.007</td>
<td>1.024</td>
<td>1.056</td>
<td>1.086</td>
<td>1.116</td>
<td>1.145</td>
<td>1.175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>水量</th>
<th>深度</th>
<th>K/L/h</th>
<th>1.000</th>
<th>2.000</th>
<th>3.000</th>
<th>4.000</th>
<th>5.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.954</td>
<td>0.981</td>
<td>1.010</td>
<td>1.040</td>
<td>1.069</td>
<td>1.099</td>
<td>1.129</td>
</tr>
<tr>
<td>375</td>
<td>0.958</td>
<td>1.005</td>
<td>1.035</td>
<td>1.064</td>
<td>1.093</td>
<td>1.122</td>
<td>1.151</td>
</tr>
<tr>
<td>500</td>
<td>0.999</td>
<td>1.015</td>
<td>1.046</td>
<td>1.075</td>
<td>1.104</td>
<td>1.133</td>
<td>1.162</td>
</tr>
<tr>
<td>625</td>
<td>1.003</td>
<td>1.022</td>
<td>1.052</td>
<td>1.082</td>
<td>1.111</td>
<td>1.140</td>
<td>1.169</td>
</tr>
<tr>
<td>750</td>
<td>1.007</td>
<td>1.024</td>
<td>1.056</td>
<td>1.086</td>
<td>1.116</td>
<td>1.145</td>
<td>1.175</td>
</tr>
<tr>
<td>1,150</td>
<td>1.007</td>
<td>1.024</td>
<td>1.056</td>
<td>1.086</td>
<td>1.116</td>
<td>1.145</td>
<td>1.175</td>
</tr>
</tbody>
</table>

1.008(1.026×200+1.024×300+1.000×250+0.991×250+0.959×250)−1250
=+10 (m)
すなわち圧力損失は10 m になるから動水位は
50+2×10=100 (m)

動水位100 m に対する G.L.R. は Fig. 2 より5になる。ガス層の G.L.R. は2.4であるから注入ガス量は
(5−2.4)×2,000=5,200 m³/day
すなわち上記の条件のガス井は250 mの深度より

5,200 m³/day のガスを注入すると、4,800 m³/day のガスを採取できる。

III 計算基礎

1. ガス注入点より上の流れ
昭和32年新穂ガス田において、ガスリフトの大掛りの実験をしたが、その実験を基礎にしていいろの仮定を設けて行った。計算式は1952年 A.P.I. に発表された Fred H. Poettmann と Paul G. Carpenter の論文
Fig. 5 地上実験装置の配置

Fig. 6 坑 内 図

以下 P & C 論文と略称する）のものを使用し、エネルギー損失値 f を若干修正して行った。

a. 実験装置
実験は帝石新湯鉱業所の閾田の SR 25・SR 26、内野の UR 16 および新潟の NR 114において行った。SR 25・SR 26 および UR 16 は 81/4 セメントライニング管のケーシングフロアを、NR 114 では 101/2 セメントライニング管のケーシングフロアと 100 mm および 150 mm のエスロンパイプのチュービングフロアの実験をした。

地上における装置の配置ならびに計量器の取付位置その他の Fig. 5 に示す。Fig. 6 は坑内図を示す。採収ガスの一部を高圧コンプレッサーで圧縮し、SGP 1 B のリフトを通して圧入し、残部は産出ガスとしてガスタンクに導いた。SGP 1 B のリフト管は 100 m・150 m・200 m 250 m および 300 m の各深度まで下げられ、それぞれの深度でガス圧入量を変え、各点の圧力を測定して圧力勾配を求めた。生産水は 2 カ所の四角塩により計量した後放水路に流した。No. 1 の四角塩はもじろい使用されてきたものであり、No. 2 は JIS 規格のもので前者の誤差測定に使用した。SGP 1 B の液面観測管は P.I. 測定用のもので、電気の接点を保持フロートを継で下げ、その継の長さを測定して坑底圧力を推定。各深度の圧力測定のために 21/4 T の坑底圧測定管をガス圧深度まで下げた。その際には測定圧力の誤差は少なくするために Fig. 6 の a に示すようなアンカーを Fig. 6 の b のように上部は 30 m、下部は 100 m 間隔に設置した。そして各深度の圧力は 1,400 psi のメララ式坑底圧測定器によって測定した。Fig. 6 の a はチュービングフロアの場合であり、b はケーシングフロアの場合である。

SGP 1 B のリフト管からガスを所定圧力下に入るとリフトが始まるが、リフト開始直後に流量・圧力の変動が大きいので、通常半日経過して安定した状態に達してから種々の測定を行った。

Table 2 に実験井の主なデータを記載する。

b. 実験井の諸元

Table 2 に実験井の主なデータを記載する。

Table 2

<table>
<thead>
<tr>
<th>No. 1</th>
<th>No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS</td>
<td>JIS</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

c. 計算式
計算式は前記のように P & C 論文によった。理論式はさきに当協会誌* に発表しているから、計算に使用した式のみ下記する。P & C 論文 gaz と水の 3 層流の式であるので、ガスと水の 2 層流の式として若干変形した。

圧力勾配は理論式を展開して下記の形に書くことができる。

\[
\frac{Jp}{
\Delta h = \frac{\rho}{\rho} + K \dot{\rho} \tag{2}
\]

ここに \(\dot{\rho} \) は圧力差 Jp 間の積分された平均密度で、\(K \) と \(\dot{\rho} \) は次式で表される。

\[
\dot{\rho} = \frac{M}{V_m} \tag{3}
\]

* 石油技術協会：新豊ガス井の圧力勾配、石油技術協会誌、第 21 巻第 2 号、田中正；ガスリフト井の見張り推定値について、石油技術協会誌、第 22 巻第 6 号
Table 2 実験井のデータ

<table>
<thead>
<tr>
<th></th>
<th>SR 25</th>
<th>SR 26</th>
<th>UR 16</th>
<th>NR 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>成功年月日</td>
<td>30.8.22</td>
<td>30.8.20</td>
<td>32.5.19</td>
<td>31.7.29</td>
</tr>
<tr>
<td>標高 m</td>
<td>3.26</td>
<td>3.26</td>
<td>13.5</td>
<td>1.52</td>
</tr>
<tr>
<td>被覆深度 m</td>
<td>779</td>
<td>662</td>
<td>836</td>
<td>547</td>
</tr>
<tr>
<td>ケーダンジ</td>
<td>8"セメントライン管</td>
<td>8"セメントライン管</td>
<td>8"セメントライン管</td>
<td>10"セメントライン管</td>
</tr>
<tr>
<td>ガス層</td>
<td>名称</td>
<td>P 層</td>
<td>K 層</td>
<td>P 層</td>
</tr>
<tr>
<td>深度 m</td>
<td>727〜762</td>
<td>625〜657</td>
<td>788</td>
<td>528</td>
</tr>
<tr>
<td>湿水面 m</td>
<td>37</td>
<td>28.4</td>
<td>55.3</td>
<td>33.7</td>
</tr>
<tr>
<td>B.H.P.</td>
<td>745</td>
<td>625</td>
<td>790</td>
<td>520</td>
</tr>
<tr>
<td>継続圧力 kg/cm²</td>
<td>71.56</td>
<td>60.91</td>
<td>72.25</td>
<td>50.22</td>
</tr>
<tr>
<td>ガス層温度 °C</td>
<td>34</td>
<td>29</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ガス層 G. L. R.</td>
<td>1.65</td>
<td>1.49</td>
<td>1.97</td>
<td>1.02</td>
</tr>
<tr>
<td>生産水の比重</td>
<td>1.008</td>
<td>—</td>
<td>1.008</td>
<td>1.004</td>
</tr>
</tbody>
</table>

\[
K = \frac{M Q_0}{2.26 \times 10^{14} D^3} \hspace{1cm} (4)
\]

ここに
\(f \) = エネルギー損失値
\(D \) = 管の内径
\(Q \) = 生産水量
\(M \) = 水1klに付随するガスと水の重量
\(G_{sw} \) = 生産水の比重
\(G_x \) = 生産ガスの比重（空気に対する）
\(S_g/w \) = ガスと水の比

\[
\begin{align*}
V_m &= P_2 \left(\frac{P_1}{P_2} - 1 \right) \left[(S_g/w - S_i) \left(P_1 - P_i \right) + \frac{1}{2} \frac{n_c}{p_c} \frac{V_m}{T_a} \left(\frac{Z}{Z_1} \right) \right] \\
&= \frac{P_1}{P_2} \left(\frac{P_1}{P_2} - 1 \right) \left(S_g/w - S_i \right) \left(P_1 - P_i \right) + \frac{1}{2} \frac{n_c}{p_c} \frac{V_m}{T_a} \left(\frac{Z}{Z_1} \right)
\end{align*}
\]

\(n_c \) = ガス層圧縮係数の傾斜
\(P_1 \) = ガス層圧縮係数カーブを直線である仮定したときの圧力
\(S_i \) = ガス層圧縮係数カーブを直線である仮定したときの圧力
\(P_2 \) = 基礎圧力
\(T_a \) = 基礎温度
\(T_{ave} \) = 流動温度
\(Z \) = ガスの圧縮係数

\[
P_1 - P_2 = 任意の2点間の圧力差 \hspace{1cm} \text{kg/m}^2
\]

\[
D_{sw} = \frac{1.474 \times 10^{14} M Q_0}{P_2} \hspace{1cm} (5)
\]

すなわちエネルギー損失値は実験によって求め、流れの各点の圧力勾配を計算でき、流れの設計が可能である。

P & C 論文はガスと水の混合垂直流の研究では現在最も権威あるものの1つであると思われるが、関係の矛盾があるようである。

P & C 論文では垂直流におけるエネルギー損失値を質量速度 \(D_{sw} \) に対して配列した。このエネルギー損失値は管内を流れる流体の摩擦損失とスリップ損失の和である。\(D_{sw} \) は運動粘性係数を一定にした場合のレイノルズ数であると考えられるが、ダイゼンションのある数である。P & C 論文には3つの矛盾があるようである。

（1）運動粘性係数は Nikuradse の実験によれば、乱流の場合ある程度レイノルズ数が大きくなると、粘弾性係数はレイノルズ数を無関係になる。しかし Nikuradse の実験は单一流体の場合であり、混合流体の場合にも適用されるか否か疑問である。

（31）
(2) Nikuradse の実験のように管径が相当に影響されるのではないかと考えられる。
(3) Dv は、(5) 式において C を係数とすると,
\[C \frac{M_O Q}{D} \]
になる。すなわちエネルギー損失の f 値は管径が定まると流体の質量のみの関数になるということになる。いわゆる「筒形」流体の質量が一定に保たれるとき、管井・ガス井の上部も下部を同一のエネルギー損失を仮定することになる。これはエネルギー損失の大きな要因を占めるスリップ損失がガスと液体の存在状態いかんにかかわらず一定であると考えられる。
P&C 論文は上述のように、幾つかの矛盾を持つが、それは f 値のとりかたにもあると思われる。それでは f 値の管径別ならびに深度別の配列を時計。しかし深度別の配列は各管井毎に傾向の差が多かったので、今回は管径別の配列のみによって計算を試みた。それによって上述の (2) の矛盾を除くよう試みた。
各管径に対して、Dv と f 値の関係をプロットすると Fig. 7 のようになる。実線の部分が実験によって求めた

Fig. 7 f の計算値の平均

Figure 7

Table 3 測定 図

<table>
<thead>
<tr>
<th>ガス井名</th>
<th>流れの状態</th>
<th>計算回数</th>
</tr>
</thead>
<tbody>
<tr>
<td>N R 114</td>
<td>100 mm チュービングフラウ</td>
<td>29</td>
</tr>
<tr>
<td>N R 114</td>
<td>150 mm チュービングフラウ</td>
<td>35</td>
</tr>
<tr>
<td>N R 114</td>
<td>10 1/4 ケーシングフラウ</td>
<td>121</td>
</tr>
<tr>
<td>S R 25</td>
<td>8 1/2 ケーシングフラウ</td>
<td>153</td>
</tr>
<tr>
<td>S R 26</td>
<td>8 1/2 ケーシングフラウ</td>
<td>243</td>
</tr>
<tr>
<td>U R 16</td>
<td>8 1/2 ケーシングフラウ</td>
<td>76</td>
</tr>
</tbody>
</table>

Fig. 8 管径と f 値の関係

Figure 8

10 1/4 セメントライニング管の場合は 2 1/4 T 1 本、SGP 1 B 2 本挿入して実験したので、Fig. 8 には挿入管の正味断面積を減じ、相当円に換算した円管としてプロットした。100 mm エスロン管の場合は測定数が少ないためかカーブにのらなかった。それで圧力勾配
\[\frac{dP}{dh} \]
と流動密度 \(\rho \) の関係図の平均カーブを求め、それより f 値を計算すると Fig. 7 の点線のようになるのでそれによった。本文では f 値の計算の基礎に Fig. 8 を使用した。
実験の場合は挿入管が多かったが普通はリフト管 1 本だけである。またガス井によってリフト管の大きさが異

(32)
なれ。それではそれらの関係をいかにして補正するかが問題となる。本計算では便宜上流体平均深さによって補正することにした。流体平均深さは次式で表わされる。

\[\text{流体平均深さ} \times m = \text{管路断面積} \]

(6) 式によって各組合せ管のmの値を求めると Table 4 のようになる。

<table>
<thead>
<tr>
<th>ケーシング</th>
<th>据入管</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 1/4 C</td>
<td>2 1/4 T</td>
<td>1.09</td>
</tr>
<tr>
<td>"</td>
<td>1 B</td>
<td>1.75</td>
</tr>
<tr>
<td>"</td>
<td>なし</td>
<td>2.60</td>
</tr>
<tr>
<td>8 1/4セメント管</td>
<td>2 1/4 T・1B・1B</td>
<td>2.31</td>
</tr>
<tr>
<td>"</td>
<td>2 1/4 T</td>
<td>3.18</td>
</tr>
<tr>
<td>"</td>
<td>1 B</td>
<td>3.83</td>
</tr>
<tr>
<td>"</td>
<td>なし</td>
<td>4.68</td>
</tr>
<tr>
<td>10 1/4セメント管</td>
<td>2 1/4 T・1B・1B</td>
<td>3.46</td>
</tr>
<tr>
<td>"</td>
<td>2 1/4 T</td>
<td>4.44</td>
</tr>
<tr>
<td>"</td>
<td>1 B</td>
<td>5.95</td>
</tr>
</tbody>
</table>

流体平均深さによって、8 1/4セメントライニング管内に2 1/4 T および1 B の据入管がある場合、および4 1/4 C 内に2 1/4 T および1 B の据入管がある場合、f 値を補正し、それをプロットすると Fig. 9 のようになる。Fig. 9 によると、据入管が2 1/4 T の場合も1 B の場合も大差がないが、計算の過程において直径の要素が入るので、1 B の据入管の場合がエネルギー損失が少ない。

次に考えられるのは、リフト管がどの位の偏心率でケーシング内にあるかという問題である。これはガス井の側面の傾斜である。ケーシングとリフト管の間隔は深さに対して偏心であるから、両者は接している（偏心率最大）ものと思われる。今回の据入管のf 値の補正は流体平均深さによってが、据入の式* による計算値と比較すると 8 1/4セメントライニング管の中に4 1/4 T のリフト管を据入した場合、およびに4 1/4 C の中に2 1/4 T のリフト管を据入した場合とも、據入の式の偏心率最大の場合のほうに近似している。これは流体平均深さによる補正が近似的に使用できる裏付けであると考えられる。しかしガスと水の一貫流の場合には水のスリッページがあるから、それらの補正方法は最適であるとは考えられない。

e. 計算基礎データ

(f) f 値

e. 計算値

上述のように、f 値を管径別に Dmv に対し、てプロットしたものを使用した。そして据入管の補正は流体平均深さによって。

(ロ) ガスの溶解度

新潟ガス田の開発の SR 25・SR 26 で測定したものを使用した。Fig. 10 に示す。他のガス井の溶解度もほぼ同傾向を示すのでそれによった。

(ハ) ガス溶解係数

Fig. 10 溶解度

![Fig. 10 溶解度](image)

* 据入の式 1 = 0.3382(1 - \frac{b}{a})^{1.247}(1 - 0.164 e^{2.22}) Re^{-0.252}

\(b \) = 据入管の内径, \(a \) = 外管の内径, \(e \) = 偏心率, \(Re \) = レイノルズ数, 適用範囲は \(a \approx 0.3～0.58, a = 3.9～6.4 \text{ cm}, Re = 2 \times 10^4 \)

(33)
新国 NR 46 での測定データを用いた（Fig. 11）ガス層を含むグリフトの場合は影響が小さいので、通常の計算では無視してもよいようなである。

（二） 坑底圧力降下の割合

生産水量に対する坑底圧力降下の割合は個々のガス層で傾向が異なるものと思われるが、本計算では便宜上直線的に変化するものと仮定した。参考までに SR 25・SR 26 のそれを Fig. 12 に示す。

f. 所要ガス量の計算図について

上述のような式と仮定を用いて、Fig. 1 ～ 4 のような所要ガス量の計算図を作成した。

作図例として、ケーシング 8 1/4", リフト管 2 1/4", 生産水量 2,000 kl/day, セパレーター圧力 0.2 kg/cm² の場合を下記する。

まず種々の G.L.R. の圧力勾配を画くと Fig. 13 のようになる。

次に Fig. 13 の関係をガス注入深度と G.L.R. の関係にプロットし直すと Fig. 14 のようになる。

さらに 動水位と G.L.R. の関係にプロットした結果、先掲の Fig. 2 のようになる。Fig. 13 と Fig. 2 は本質的に同様なものである。

2. ガス注入点より下の流れ

水溶性ガスを採取するガスリフトでは、ガス層の G.L. R. が比較的小さいので、ガス層からガス注入点まではスリーブ損失のない流量の流れと仮定できるようである。スリーブ損失を無視すると、圧力勾配は流体の密度と管内における流体の摩擦損失および流体の力の分布に応じて変化する。この場合ガスパチャップは密度の減少・摩擦損失の増加として
Fig. 14 注入密度とG.L.R.の関係

影響する。管内径が200 mm位、G.L.R.が2位、流量が2,000 kl/day位のガス注入点より下の平均圧力勾配は、静止圧力勾配に等しいと見做して大差ないようである。

これは計算値もそうであるし、実測値はそれを裏付けしている。

液体にガスが含まれると密度は次式によって表わされる。

\[
\rho = \frac{\rho_1 + \rho_g}{1 + V_g}
\]

ここに \(\rho\) = ガスが含まれた液体の密度 \(\text{kg/m}^3\)

\(\rho_1\) = 液体1 m³の重さ \(\text{kg}\)

\(\rho_g\) = 液体1 m³に伴随するガス体の重さ \(\text{kg}\)

\(V_g\) = 液体1 m³に伴随するガス体の占める体積 \(\text{m}^3\)

上式においてG.L.R.が小さいと\(\rho_g\)は\(\rho_1\)に比べ非常に小さいので無視すると次式のようになる。

\[
\rho = \frac{\rho_1}{1 + V_g}
\] (7)

直管で流体が流れると圧力損失は周知の次式で計算した。これは圧力勾配の増加分と考えられる。

\[
\Delta P_t = 4f \frac{d_f}{d} \frac{\rho v^2}{2}
\] (8)

ここに\(\Delta P_t\) = 直管内の圧力降下 \(\text{kg/m}^3\)

\(f\) = 摩擦係数

\(d\) = 管の内径 \(\text{m}\)

\(d_f\) = 管の長さ \(\text{m}\)

\(\rho\) = 流体の密度 \(\text{kg/m}^3\)

\(v\) = 流体の平均速度 \(\text{m/sec}\)

\(g\) = 重力の加速度 \(9.8 \text{m/sec}\)

(7)式と(8)式において

\[
\frac{4}{d} \frac{v^2}{2g} = A, \quad 1 + V_g = B
\]

とすると、圧力勾配\(\Delta P_t\)は次式のように表わされる。

\[
\frac{\Delta P_t}{dh} = \rho + \frac{\Delta P_t}{dh} = \frac{A}{B}
\] (9)

\(A\)を圧力勾配ファクターとし、\(\alpha\)とすると、ガス層からガス注入点までの圧力損失水頭は実用的に次式（前掲）で表わされる。

\[
\rho \times \sum (\alpha h_n + \alpha h_n + \alpha h_n + \cdots) = H
\] (1)

IV 結言

ガスリフトのガスの所要量は非常に変動が多く、個々のガス井では上述のデータは必ずしも一致しないと思われるが、平均値をとると大体合することが千葉ならびに新潟の現場データで確かめられている。

謝辞

東京大学の瀧田隆門先生に考え方について終始御指導を頂いた。

実験の計画は当時帝石本社におられた加藤元彦・小野地弘次の両氏がされ、実験の実施は当時帝石新館におられた和田慶見氏が担当された。

参考文献

2) Handbook of Natural Gas Engineering: McGraw Hill Book Company