湖沼堆積物における古環境指標としての珪藻化石
—現状と課題—

齋藤 めぐみ*1,a・林 辰 弥*1

珪藻化石の個体サイズについて、分類學、生態学、古環境学の視点から議論した。珪藻の個体サイズは、無性増殖によって減少し、有性生殖によって回復する。一方で、個体サイズは環境要因にも影響され、その地質学的時間スケールでの変化は、環境変化に対する珪藻と生態系全体の応容や生存戦略の進化の面で注目される。琵琶湖湖底ポーリングコアの解析結果によれば、Stephanodiscus suizukiiの個体サイズは約4万年より約2～1万年前の退水期に大きかった。また、珪藻の個体サイズに強く影響すると考えられる有性生殖の頻度は、Aulacoseira nipponicaで退水期において、それ以前よりも減少した。珪藻化石において古環境復元の指標を確立するためには、まず、このような変化を記載し、他の指標から推定された環境の変化を照らし合わせて、生態系の変化を議論していくことが必要だろう。

キーワード：珪藻化石、淡水湖沼、個体サイズ、ライフサイクル、種内形態変異

I. はじめに

珪藻は海だけでなく、湖沼にも普遍的に分布している。珪藻の細胞を包むガラス質の殻は、化石として堆積物中に保存される。とくに、日本などの温帯域の湖沼においては、珪藻が十分に繁茂し、大量の珪藻化石が堆積物中に保存されている。たとえば、薄片あるいははすみ取り装置を利用して、年縛（1年周期で堆積する殻）の堆積構造を詳しく観察すると、堆積物を構成する粒子のほとんどが珪藻化石であること気づく（図1）。湖沼堆積物の多くは珪藻土と呼んで差し支えないほどである。したがって、湖沼堆積物の中には、珪藻化石についてのさまざまな研究資料が埋まっている。しかし、われわれは、珪藻化石の分析をまだいくらか読み解いていない。もし、この解釈に少しでも成功したら、珪藻化石は古環境の指標として貢献することをとらえず、水域の生態系を支える一次生産者の生態や、その進化の歴史を復元することもできると考えられる。

珪藻化石というと、古環境を復元する指標として期待する研究者が多いと思われる。珪藻化石が古環境を復元する目的で有効に用いられてきたのは、過去の塩分を推定する研究においてである。珪藻が塩分の違いによって特徴的な群集を形成することは古くから知られており、Kolbe（1927）はそれをハロビオニスシステムとして発表した。このKolbe（1927）のハロビオニスシステムは、その後多くの改良を経て、過去の塩分あるいは海水準を推定する研究に数多く用いられてきた。90年代以降になると、塩分・海水準を定量的に復元することが試みられるようになった。たとえば、Sawai et al.（2002）は、北海道南東部の湿原から得られた堆積物中の珪藻化石を用いて、相対的な海水準変動を詳細に復元し、その後、地震と地盤の隆起・沈降の関係を議論するまでに発展させていている（Sawai et al., 2004）。

このように、湖沼環境における珪藻化石の研究が成功を収めることができた理由は、塩分や海水準といった環境因子の傾斜に対して、珪藻群集が連続的にリニアに変化しているからである。小杉（1988, 1989）の沿岸域における珪藻化石のタフォロミーの検討によれば、珪藻の変遷は本来の生態系の外側に観察される場合があるものの、その影響を注意深く検討することで、逆に化石群集から過去の塩分や堆積環境を精度良好に復元できることが指摘されている。また、生息範囲が狭い種であれば、

2010年2月5日受理。2010年4月22日発行。日本第四紀学会2009年大会シンポジウムにおいて講演。

*1 国立科学博物館地学研究部 〒169-0073 東京都新宿区百人町3-23-1。
*a Corresponding author: memekato@kahaku.go.jp
その種の出現によって古環境を定量的に復元できる。たとえば、生息範囲が海から淡水環境の境界付近にわたる干潟に限定される Pseudopodosira kosugii (Tanimura and Sato, 1997) は、完全世前期の海進期から海退期の堆積環境。なかでも旧汀線を復元するために役立てられている（たとえば、佐藤ほか, 2004）。

一方、淡水湖沼においては、珪藻化石を用いて古環境を復元することは容易ではない。その理由は、淡水湖沼はそれぞれ独立した湖沼をもち、その大きさ、深さ、水の物理化学的な性質が非常に多様である（田中, 1992, 2004）ことに集約される。また、それぞれの湖ごとに、固有の成因と地史を踏まえて現在の状況が形成されてきたことも重要であろう。このような環境の構成と、透水湖沼にはそれぞれ独立した生態系が築かれており、生態系の構成員の一つである珪藻群集も湖沼によって大きく異なる。そのため、珪藻群集の違いが生じる原因を、ある特定の環境要因と強く結びつけることは容易ではない。言換えれば、「この珪藻群が出てきた、こういう環境だった」と言える根拠に乏しく、環境因子の傾斜に対応して珪藻群集がリニアに応答することを前提とした古環境指標は成り立たないといえる。

また、淡水湖沼に生育する珪藻は、同一種だと判断されても、湖沼間で形態学的特徴に差異が見られることが多い。図 2 に、湖沼間の形態変異の例として、日本の 8 つの淡水湖沼から産出する Puncticulata praetermissa (Lund) Håkansson の珪藻の形態を比較した結果の一部を示した。珪藻の殻の構造の多くは個体サイズに比例して変化するので、図 2 では大きさを横軸にとって殻面の有起突起の数をプロットした。その結果を見ると、それぞれの湖沼のものはおおむね右上がりの直線にプロットされており、湖沼の個体群の中の形態学的な差異が小さいことが示されている。しかし、その直線の傾きは湖沼間で異なり、殻面の有起突起は、芦ノ湖では最大サイズ付近の個体以外ではほとんど 0 個であるのに対し、池田湖や一ノ目湖では非常にたくさん存在していることがわかる（図 2）。

湖沼の珪藻群では、このような種内形態変異をしばしば観察するために、分類学的な混雑があり、さらにはこのことが古環境を検討する際の障害となっている。

このような湖沼間の形態学的変異は、湖沼ごとの物理化学的環境、あるいは動物プランクトンや魚類などの生物種の違いといった外的要因で引き起こされている可能性もあるが、別の湖沼に隔離されたことによって生じた伝達的な違いを反映している可能性もある。前者の可能性が高いとすると、珪藻は地理的に離れた湖沼間を比較的自由に移動していると考えられるので、湖沼ごとの
珪藻群集の遺伝的な違いは観察できる、ある特定の環境には、特定の形態学的な特徴が現れるということになる。一方で、後者の可能性が支持されるならば、湖沼間の移動はまれで個々の湖沼に個別の地域個体群があり、ある特徴的な形態をもつ珪藻の地理的な分布は湖沼の地史に強く影響されるだろう。このような2つの可能性のどちらかが支持されるのかは、まだほとんど解明されていない。後に後者の可能性を検討するためには、まず珪藻そのものと植物プランクトン群集を、湖沼の生態系の歴史として理解することが重要である。そのために、珪藻の群集構成だけでなく、さらに、それぞれの珪藻種の形態学的特徴や時空間のなかでどのように変化するのかを明かにする側面も重要である。本稿では、珪藻化石の形態の一つである個体サイズについて、分類学、生態学、古環境学の観点から議論する。

II. 分類学からみた珪藻の個体サイズ

珪藻などの単細胞藻類の多くは、無性に分裂して増殖し、時には有性生殖を行うライフサイクルをもっている。珪藻の場合、ライフサイクルのなかで個体サイズ（細胞を包んでいる殻のサイズとほぼ同義）が変化する特異な性質がある。珪藻の無性の増殖においては、母細胞の内側に2枚の殻が形成されて細胞分裂の時には1つの娘細胞は母細胞と同じ大きさの殻を、もう1つの娘細胞は母細胞より1回り小さい殻を受け継ぐ（図3）。つまり、この無性増殖を繰り返していくうちに、徐々に小さな個体になる。さらに細胞分裂が繰り返されると、個体サイズは最大の時の4分の1ほどにまで小さくなる（Round et al., 1990）。小さな個体は、大きな個体の細小コンピュータではなく、個体サイズの減少にとどまない進化域のアプロセバリー変化であり、殻を構成する部分の数や密度も減少する（図2参照）。そして、ある程度小さくなった個体は数分裂により配子体となり、有性生殖に起こる。このとき、小さな殻は捨てられて、新たに大きな殻が形成され、殻のサイズを回復する（図4）。このように、珪藻においては、ライフサイクルにともなう個体サイズの変化によって殻の形態が変化するので、分類学的な混乱が起こりやすい。

たとえば、現在のバイカル湖に優占する*Cyclotella baikalensis* Skvortzov & Meyer, *C. ornata* (Skvortzov) Flower, *C. minuta* (Skvortzov) Antiovaは、形態学的に酷似しているため、研究者間で2種あるいは3種に分類すべきか見解が異なっている。これらの種の特徴、形態、細胞の配列などは非常によく似ているものの、殻サイズが異なっている。Julius et al. (1997) や Grygar et al. (2007) は、中間のサイズのグループを*C. ornata* とし
図3 断面を模式的に示した珪藻の分裂様式
Castenell (2007)を変形。分裂するたびに、ひとまわり小さい殻が形成される。

図4 硅藻のライフサイクルの模式図
Kato et al. (2003)を変形、月湖堆積物から産出した硅藻化石にもとづいて推定。点線で囲んであるところは、有性生殖のプロセス、細胞がガラス質の殻をもたないので、化石には直接の証拠が残されない。


さらに、硅藻の種名データベース（たとえば、algaebase, http://www.algaebase.org/）を見ると、var. maxima, var. minor, var. minutula, var. pusillusなどのサイズに関する言葉を変種名にもつ分類群がたくさん並んでいる。このことは、多くの硅藻種において、「種」に分けるほどの形態的な違いはないものの、殻サイズが異なるグループがあると判断されたことを示している。多くの場合、この殻サイズの違いが遺伝学的に意味のある差異なのか、ライフサイクル上の種内形態変異にすぎないのかはよくわからていない。しかしながら、この殻サイズの変化が生層学的に重要であることが指摘されている（Baldau und Barron, 1980）。下部中新統から上部中新統に産出すActinocyclus ingens Rattray は、殻の大きさによって殻面のたわみの程度に違いがあり、これを分類基準にして3タイプに分けられている（Baldau und Barron, 1980）。そのなかでもっとも大きいタイプは、出現する層準が中中新統に限定されるため、生層学的に重要であるとして変種var. nodusとして記載された。その後、この違いを種内形態変異であることを指摘したWhiting and Schrader (1985)によって、品種 forma nodusと分類学上の位置づけを変更されている。これららの研究は、殻サイズが数百万年という時間スケールで大幅に変化した証拠を示しており、これが硅藻の進化なのか、環境変化に対する応答なのか、興味深い問題を提示
している。
珪藻の個体サイズに関連した分類学的な混乱には、進化や種分化、種絶とは何かという種概念そのものに対する論争も含まれている。現生種であれば、分子生物学的な手法あるいは培養実験によって、個体サイズの違いが遺伝的な違いであるのかも、種内形態変異であるのかを検証できる、また、大きい個体と小さい個体の生理学的特徴や環境適応性に差異があるかどうか、明らかにできる可能性がある、逆に、化石材料からは地質学的な時間スケールでのサイズの変化が明らかにできる。現生と化石研究の両者が進展することによって、珪藻の殻サイズの研究は単なる分類学を超えて、生物や生態系の進化を解明する鍵となることが期待される。

III. 生態学からみた珪藻の殻サイズ
ライフサイクルのなかで、珪藻の個体サイズが減少・回復することはよくから知られてきたが、この個体サイズの変化については多くの生物学的な謎が残されており、そもそも、ライフサイクルのなかで個体サイズが系統的に変化するのは、単細胞藻類のなかでは珪藻だけである。Lewis（1984）は、個体サイズの変化が有性生殖の頻度をコントロールするための戦略だと指摘している。珪藻の有性生殖が起こるためには、環境の変化によるきっかけだけでなく、個体サイズがある閾値以下になることが必要である。この閾値があるために、ライフサイクルにおける個体サイズの変化の範囲は種内においてはほぼ一定に保たれている。しかし一方で、同一種内でも個体サイズの変化幅が変わることもある。Davidovich（1994）の培養実験によれば、いくつかの珪藻種において、配偶子が大きいほどより大きく個体サイズを回復することができる、有性生殖直後の初期細胞の大きさには1.2～2倍程度の違いがある。したがって、1つの個体群内においても環境条件や偶然によって、殻サイズの最大値や最小値、最頻値はいくらか変化する。このように個体サイズに可塑性をもっていることによって、珪藻はしばしば変化する環境に対して適応度を高めることができるかもしれない。

珪藻のような単細胞藻類にとっては、個体サイズは生態学的な性質と密接に関わる機能形態の一つに挙げられている（Reynolds, 1984）。一般に、個体サイズが小さくなると、細胞体積に対してその表面積が相対的に大きくなる。これは、細胞表面を通じた物質の代謝速度が相対的に速くなったり、増殖が速くなることを意味している。また、表面積が相対的に大きいと、沈降速度は相対的に遅くなり、光の届く表面水中に長くとどまることができる。植物プランクトントにとっては、増殖速度や沈降速度を生きがうか死ぬかを決める重要な要因であるため、上記のように、それに影響を与える個体サイズは生態学的な性質を決定する要素の一つである。大局的に見て、個体サイズが小さくなると、沈降速度が遅く、浮遊を十分に受けて日和見的な増殖を繰り返す戦略者（多産で短命）は、逆に個体サイズが大きくなる増殖速度が速いならば、K戦略者（少産で長期安定的増殖）であると推定できる。Bellinger（1977）は、現生珪藻の個体サイズと湖水の温度と粘性の関係を明らかにして、珪藻のライフサイクルにともなう個体サイズの減少・回復によって、少なくとも湖沼環境の変化に対する応答を高めていることを指摘した。すなわち、珪藻は秋から冬の低温期間に有性生殖を行って個体サイズを回復し、春から夏の水温上昇期には無性増殖により個体サイズが減少し、相対的な表面積が増加するため、十分な浮遊力と栄養を受けて、素早く増殖することができる。

Winder et al.（2003）は、北米米湖において珪藻群集（同一種だけではない）の殻サイズを検討している。その結果、近年の暖化化にともなって、より小型の珪藻種が優勢になってきたことを報告している。さらに、地質学的な時間スケールでみると、新生代を通じて海生珪藻の個体サイズが減少してきたことが示されている（Finkel et al., 2005）。このことは、新生代における気候・環境の周期的な変動にともなって、より小型で増殖速度の速い分類群が選択されてきたことを反映していると解釈されている。珪藻の個体サイズは、気候・環境変化と生物のg-K戦略者の関係を検討する貴重な材料で、これにもとづいて生態系の安定性や、そこにおける生存戦略についての議論をも発展させることができる重要な情報である。

IV. 古環境学から見た珪藻の個体サイズ
珪藻化石は堆積物中によく保存されており、その殻サイズを測定することによって、珪藻化石群集の個体サイズの循環学的な変化を生きた珪藻と同様に、精度よく推定することができる。しかし、化石珪藻群集の個体サイズについて考察した研究は少なく、コロンビア大学のBurckleらの先駆的な研究のみで、その追跡は行われていない。Burckle and McLaughlin（1977）は、赤道太平洋におけるCoscinodiscus nodulifer A. SchmidtのちにApeitiaに属名変更の平均個体サイズから生産量の大きい南営海域において大きくなることを指摘した。また、
Burckle et al. (1981) は、同地域で得られた堆積物コアを解析し、水期において個体サイズが大きい個体が増え、間水期には大きい個体が減ることを報告した。そして、殻サイズの変化が、層序対比に使える可能性や消昇帯あるいは珪藻生産量の指標として、古環境復元に応用できる可能性を議論している。

一方、淡水湖沼堆積物における珪藻化石群集は、数種程度が圧倒的に優占する種を構成していることが多い。また、海洋に比べて水深が浅く、珪藻化石の保存がよいため、多産する珪藻種の個体サイズ分布を容易に検討できる。このような利点を生かして、Kato et al. (2003) は水月湖の堆積物中に多産した Stephanodiscus suzukiiについて、個体サイズ分布の層序学的な変化を報告している。それによれば、汽水化の直後に殻サイズの大きな個体の数が顕著に増加した（図5）。本種は現在の琵琶湖から多産し、水月湖においても淡水環境下における優占種の一つである。つまり、汽水化は本種に対して生育を阻害する要因として作用したと推測され、そのため生産量が減少したと推定される。この水月湖の事例から、対的に小さい個体が多い時に生産量が高く、逆に相対的に大きい個体が多い時には生産量が低かったことが指摘される。これは、生産量が多いと予想される消昇帯において、個体サイズの大きい個体が増加することを報告した Burckle and McLaughlin (1977) を必ずしも支持しない。この不一致の要因の一部は、過去の珪藻生産量を高い信頼性をもって推定できていないことによる。堆積物中の珪藻化石の数が少なく、他の方法をも用いて生産量を推定することができれば、生産量と個体サイズの関係をより鮮明に示すことができるだろう。

前章で紹介した珪藻のライフサイクル（図3）を考慮すると、無性的な増殖を繰り返していくうちに、個体サイズの平均値は小さくなり、分散は大きくなることが予

図5 水月湖堆積物に認められた珪藻化石の個体サイズ変化
Kato et al. (2003) を改変。水月湖ビストンコア SGP-12, Stephanodiscus suzukii (Kato et al. (2003) により分類改訂)の個体サイズ分布を等価線図で示した。
測される（MacDonald-Pfitzler Rule, たとえば, Drebes, 1977). しかし, Jewson (1992) の 3 年間における雑種調査によれば, 時間の経過とともに珪藻の個体サイズの平均値は小さくなるものの, その分散は変化しない。この結果は, 大きな数値が選択的に排除される何かしがらの作用が働いたことを示唆している。Jewson (1992) は, その原因として, 1) 大きい個体ほど 1 回の分裂における個体サイズの減少率が大きい, 2) 不適な環境下での分裂では個体サイズが急激に小さくなる, 3）大きい個体ほど柱（water column）での沈降速度が速く, 生体群集から排除されやすい, 4) 個々の細胞に寿命があてがい無制限には増殖できない。などのいくつかの要因が複合的に作用した結果であろうと結論づけている。

このような平均個体サイズの減少は, 月あるいは年単位で進行する。これに対して, 一般に, 化石個体群として観察されるものは, 数千年あるいは数千年の間に累积された個体群の平均値である。化石個体群において, その個体サイズ分布を測定すると, 最大値から最小値まで数倍程度の違いがあり, 一般に最頻値（モード）は最小値側に偏っている（Burckle and McLaughlin, 1977; Kato et al., 2003, 図 5, 図 6）。これは無性の二分裂を繰り返し, 小さな個体を生産しつつ個体数を増やしていった結果だと解釈される。Jewson (1992) で報告された個体サイズの季節変化を検討したときに矛盾しない。化石個体群において注目すべきことは, 個体サイズは数千年から数万年という時間スケールで見ると一定ではないことである。このような変化は, 増殖率や死亡率, ライフサイクルの変化と密接に関わっているはずである。

たとえば, 有性生殖の頻度が一定である場合を考える。増殖速度が十分に速いと, 化石として残された個体群の個体サイズの頻度値は, より小さい値を偏ると予測される。小さいサイズの個体が多数多数的に多くなり, この場合の単位時間あたりの産生量は高くなるはずである。現生の海生浮遊性珪藻の培養実験によれば, この推測を支持する結果が報告されている。Montagnes and Franklin (2001) は, 多くの種において, 水温が高いほど生長速度が速く, つまりは単位時間あたりの産生量が多くなり, その個体サイズ平均値は小さくなることを報告している。

琵琶湖堆積物から産出した珪藻化石について検討すると, 優占種の一つである Stephanodiscus suizikkii の殻サイズ分布は, 退水期（約 2 1万年前）のものよりも先新世の個体群において, 小型の個体が多かった可能性を示している（図 6)。2) と時代の最も頻値値は 5μm 以上の差が認められる。この傾向は, 温度が高く, 増殖速度が大きいときに珪藻の殻サイズが小さくなるという Montagnes and Franklin (2001) の実験結果と整合的なように見える。これまでの琵琶湖堆積物を用いた研究では, 一般に前水期において水期よりも珪藻の生産量が多かったと推測されている(Kuwae et al., 2002)。しかし, 有機化分析を行った Ishiwatari et al. (2009) では, 最終水期と完新世の基礎生産量の違いはそれほど大きくないと推定している。今後, 硅藻の生産量と水温を別のプロビシナーを用い定量的に復元し, さらに硅藻の殻サイズとの関係を検討する必要がある。

次に, 有性生殖の頻度が変化して, 側体群の殻サイズに影響を与える場合を考察する。珪藻は無性生殖の時に殻サイズが減少する一方, 有性生殖で殻サイズを最大値にまで回復させる。したがって, 個体サイズを議論するためには, 有性生殖と無性増殖の割合についても検討する必要がある。一般に, 有性生殖は無性生殖に比べて稀にしか起こらないことが知られており, 現生環境における観察ではその頻度についての知見がまだ十分ではない(Mann, 1988)。このことは, 化石記録を用いた検討が重要であることをも意味している。たとえば, 琵琶湖堆積物から明らかにされた過去 10 万年間の有性生殖の頻度を見ると, 数十倍にも及ぶ大きな変化が起こった。
表現形の多様性の経時的変化を明らかにして、それは有性生殖の頻度から推測される遺伝的多様性と、どのように関係にあるのか検討することが期待される。これを平

V. おわりに

本稿は日本第四紀学会 2009 年大会シンポジウムでの講演をもとに作成した。とくに、これから珪藻や他の生物と環境との関わりを研究したいと考えている学生・院生、そのような学生・院生を指導する立場にある方々に参考にしていただければ幸いである。淡水湖沼の堆積物においては、珪藻化石＝古環境指標とは簡単にはいえない状況にあるが、珪藻化石の形態の発生によって検証できるであろう多くの研究課題がある。たとえば、湖沼の珪藻が環境変化に対してどのように応答してきたか、どこから来ても、どのように群集を形成して現在に至るのか、あるいは、形態学的にどのように進化してきたのかなどが問題として挙げられる。本稿ではその一例として珪藻化石の個体サイズに着目し、珪藻の生態学的変化、それらと環境変化との関係について展望を交えて議論した。そこではむしろ、珪藻化石を環境の指標として用いるというより、珪藻群集の変化と環境変化を対照し、両者の関係を議論することに意義があると考えた。

現在、珪藻は、湖沼に限らずさまざまな環境に生育し、一次生産者として生態系を支え、地球上の物質循環の担

Potapova and Snoeijis (1997) による現生の河川性珪藻の観察によれば、通常の環境より揺乱された環境では有性生殖の頻度が著しく高い。また、Chepurinov et al. (2006) の有性生殖を促進する実験では、有性生殖が起こって個体サイズが回復した直後に 2 度目の有性生殖が起こり、さらに大きく個体サイズを回復した例が報告されている。このような環境では、個体サイズを減少させる無性的な二分裂の回数が限られているので、大きな個体が相対的に多くなる可能性がある。

有性生殖の頻度についての情報は、遺伝学的な側面からも注目され、進化速度や進化のメカニズムを議論するためにも重要な示唆を与える。珪藻は有性生殖によってのみ遺伝子を交換するので、有性生殖の頻度は個体群における遺伝的多様性の維持と密接に関わっていると考えられる。化石には形態学的な表現形しか残されないが、


佐藤裕司・松田功・加藤茂弘・松尾尚志（2004）北海道東部、涛沸湖岸における完新統の堆積環境と相対的海水準高度の推定. 第四紀研究, 43, 447–455.
田中正明（1992）日本湖沼－プランクトンから見た富栄養化の現状. 530 p, 名古屋大学出版会.
田中正明（2004）日本湖沼2－プランクトンから見た富栄養化の現状. 396 p, 名古屋大学出版会.
Problems and perspectives in studying fossil diatoms from freshwater sediments

Megumi Saito-Kato* 1, a and Tatsuya Hayashi* 1

Diatom cell size inferred from fossil valve size is discussed from the viewpoints of taxonomy, ecology, and paleoenvironmental sciences. Diatoms decrease their cell size during vegetative growth periods and restore it in sexual reproduction with relation to environmental factors which affect their life cycle. Cell size changes observed in Lake Biwa cores suggest ways to understand ecological responses in the diatom life cycle strategy. Cell size of Stephanodiscus suzukii from the last deglaciation is larger than that from the middle Holocene. Frequency of sexual reproduction of Aulacoseira nipponica in the late last glacial is inferred to be ten times as large as that in the Holocene. These examples should be interpreted as actual responses of diatoms to environmental change, and as probable proxies for paleoenvironments in the future.

Keywords : diatom fossil, freshwater lake, cell size, life cycle, intraspecific variation