Calculation of the Sticking Probability of a Water Molecule to a Water Cluster†

Yoshiki OKADA* and Yuta HARA*

Received 31 October 2006
Accepted 23 March 2007

Abstract — The sticking probabilities of a water molecule to a water cluster at several temperatures are calculated as a function of cluster size by using the models proposed for dissociation and stabilization rate constants of vibrationally excited clusters. The model for dissociation is built from RRK theory, while the model for stabilization is based on the general equation describing $V \rightarrow T$ relaxation rates of diatomic molecules. The sticking probabilities calculated are strongly dependent on the size of the water clusters. They increase from zero to levels close to unity in the cluster-size region of 3 through approximately 20 and keep constant at levels close to unity at a cluster size larger than 20 at 253, 273, and 300 K.

Key Words : Sticking Probability, Water Cluster, Cluster Size.

1. Introduction

Water clusters have been studied extensively in an attempt to understand the nature of hydrogen-bonded systems and the chemistry of aqueous solutions1). Atmospheric chemistry is one of the most interesting fields of application, as water clusters play important roles in various serious atmospheric issues2, 3), including ozone depletion4).

The nucleation dynamics of water clusters depend on the rate of water molecule condensation on a water cluster. The rate is given by the product of the sticking probability, the collision cross section, the relative velocity between the cluster and the condensing water molecule, and the concentration of the condensing water molecules. The relative velocity is calculated from the translational temperature of the cluster and molecule. The collision cross section can be calculated by the model5) based on the Langevin theory and molecule-cluster interaction potentials. To date, however, no general theory exists that can predict the sticking probability depending on the cluster size.

This paper describes a new model for calculating the sticking probability of a water molecule to a water cluster in cluster formation. This model can be used to quantify the dependence of the sticking probability on the cluster size and temperature. The model is therefore applicable to general nucleation theory for evaluation of vapor condensation rates.

2. Dynamics of Cluster Growth

In the early stages of cluster formation, the monomer, A_1, attachment produces, at an incorporation rate constant k_i, unstable clusters which possess sufficient energy for dissociation as expressed by Eq. (1). The dissociation of a monomer A_1 from the vibrationally excited cluster, A_n^*, generates a stable cluster, A_{n-1}, at a dissociation rate constant k_d in Eq. (2). In parallel with this dissociation path, deactivating collisions of the vibrationally excited...
cluster with inert gas atoms, M, results in the formation of a stable cluster, A_n, at a stabilization rate constant k_s, as given by Eq. (3)^{6,7}.

\[k_f \]

\[A_{n-1} + A_1 \rightarrow A_n^* \]

(1)

\[k_d \]

\[A_n^* \rightarrow A_{n-1} + A_1 \]

(2)

\[k_s \]

\[A_n^* + M \rightarrow A_n \ \ (n = 2, 3, 4 \ldots) \]

(3)

The sticking probability \(P_s \) is defined as the ratio of the production rate of A_n as expressed by Eq. (3) to the collision rate between A_{n-1} and A₁ as expressed by the lefthand side of Eq. (1). According to the pseudo steady state assumption for the concentration of A_n, \(P_s \) is given by

\[P_s = |k_s / (k_d + k_s)| P_i, \]

(4)

where \(P_i \) is the incorporation probability defined as the ratio of the production rate of A_n to the collision rate between A_{n-1} and A₁. From Eq. (4), it was found that \(P_s \) is nearly equal to \(P_i \) for \(k_s \gg k_d \) and to zero for \(k_d \gg k_s \). In reference⁸, the incorporation probability of a water molecule into a water cluster was found to be equal to unity below approximately 1,000 K for the investigated cluster sizes, ranging from 2 to 10⁴.

3. Rate Constant for Dissociation \(k_d \) of Vibrationally Excited Clusters

The value of \(k_d \) is estimated using the difference between the vibrational energy of A_n* and the dissociation threshold of the cluster based on the Rice-Ramsperger-Kassel (RRK) theory,

\[k_d = v |(E_n - V_n) / E_n| \cdot L_n \]

(5)

where \(v \) is the vibrational frequency of the bond that is lost in cluster A_n*, \(E_n \) is the vibrational energy of A_n*, \(V_n \) is the dissociation energy, and \(L_n \) is the number of degrees of vibrational freedom \((= 3n-6 \) in water, where \(n \) is the cluster size). The vibrational energy of A_n* includes the vibrational energy of A_{n-1} before the incorporation of monomer A₁, the bonding energy between A_{n-1} and A₁ which is equal to \(V_n \), and the relative translational energy (collision energy) between A_{n-1} and A₁. The value of \(E_n \) is given by

\[E_n = E_{n-1}' + V_n + E_c \]

(6)

where \(E_{n-1}' \) is the vibrational energy of A_{n-1} before the incorporation of monomer A₁ and \(E_c \) is the collision energy between A_{n-1} and A₁.

When we assume that the vibrational energy in the cluster is distributed only to intermolecular vibrations and no energy to intramolecular vibrations, and all the intermolecular vibration modes have the same vibrational frequency, then the vibrational energy of cluster A_{n-1} is given by

\[E_{n-1}' = h \nu \frac{3(n-1)-6}{|\exp(h \nu / k_B T)-1|} \]

(7)

where \(h \) is Planck’s constant, \(\nu \) is the vibrational frequency for all intermolecular vibration modes in the cluster, \(k_B \) is the Boltzman constant, and \(T \) is the atmospheric temperature at which the monomers, stable clusters, and surrounding inert gas are present. The assumption, used for Eq. (7), that all of the vibrational energy concentrates on the intermolecular vibrations is not always applicable to general clusters. However, in the case of hydrogen bond clusters, as studied here, this assumption is realistic because the vibrational frequencies, indicating the vibrational energy levels, of the intermolecular vibration modes are much lower than those of intramolecular vibration modes and the vibrational energy is distributed to the intermolecular vibrations prior to the intramolecular vibrations. In using the Maxwell distribution law for the velocities of A₁ and A_{n-1}, the kinetic energy of the relative motion between A₁ and A_{n-1} gives the value of \(E_c \) as

\[E_c = \frac{3}{2} \frac{8}{\pi} \frac{\sqrt{n-1}}{n} k_B T \]

(8)

In this work, we used \(\nu = 2.68 \times 10^{12} s^{-1} \) obtained from the Stockmayer potential of H₂O-H₂O⁹ independent of the water cluster size, since it is known that the vibrational frequencies for the intermolecular vibration modes in the soft clusters having weak intermolecular bonds as studied here do not strongly depend on the cluster size and cluster structure. We used \(V_2 = 4.23 \times 10^{-20} \) J, \(V_3 = 9.24 \times 10^{-20} \) J, \(V_4 = 9.74 \times 10^{-20} \) J, \(V_5 = 7.03 \times 10^{-20} \) J, \(V_6 = 6.90 \times 10^{-20} \) J, \(V_7 = 6.41 \times 10^{-20} \) J (i: \(\geq 7 \)) for the most stable structure of (H₂O)_n clusters obtained¹⁰ by using the ab initio molecular orbital (MO) method, where the geometry optimization of the cluster was done by the B3LYP calculations with Dunning’s correlation consistent sets of the polarization plus valence triple-\(\xi \)-class (cc-pVTZ).

Fig. 1 shows the cluster-size dependence of the dissociation rate constant \(k_d \) of the vibrationally excited cluster (H₂O)_n* at 273 K. The dissociation
rate constant was strongly dependent on the cluster size. It dramatically decreased with increases in the cluster size. This decrease was found to be due to the index L_n of Eq. (5) linearly increasing with the cluster size.

4. Rate Constant for Stabilization k_s of Vibrationally Excited Clusters

Let us assume that the collisions of A_n^* with inert gas molecules result in the deactivation of a part of A_n^* due to the $V \to T$ relaxation. This part corresponds to the two molecules constituting A_n^* close to the collision point, as shown in Fig. 2. The collision with inert gas molecules, first, induces the deactivation, due to the $V \to T$ relaxation, of the intermolecular bond between two molecules placed in the collision part. Subsequently, it induces the intermolecular-vibrational relaxation, which decreases the vibrational energy of the whole cluster. It is reasonable to believe that this assumption is realistic because of the following reasons. The vibrational energy in the water clusters is mainly distributed to the intermolecular vibrations as described above. The relaxation induced by the collisions, therefore, results in the deactivation of the intermolecular bonds mainly and almost no deactivation of the intramolecular bonds. This deactivation of the intermolecular bond is, then, restricted to one intermolecular bond between two molecules placed in the collision part, because all the intermolecular bonds are weak and the energy exchange between the cluster and inert gas molecule tends to occur in the local part of the cluster close to the collision point.

For estimation of k_s, the deactivation rate of the collision part of A_n^* caused by the collisions with inert gas molecules is calculated using the following general equation describing the $V \to T$ relaxation rates of diatomic molecules.

$$p_T = \exp \left(\frac{(1.16 \times 10^{-3} \mu^{1/2} \theta^{1/2})}{T - \mu - 0.015 \mu^{1/4}} - 18.42 \right)$$

where p is the inert gas pressure, τ is the vibrational relaxation time, μ is the reduced mass of the relaxed diatomic molecule and inert gas molecule, and θ is the characteristic temperature of the oscillator given as \hbar^2 / k_B. Suppose that a hypothetical situation is present in which one isolated intermolecular-bond between two molecules, corresponding to a water dimer, collides with inert gas molecules, N_2 in this case, at 1 atm many times. The vibrational relaxation time of this intermolecular bond can be calculated using Eq. (9). Then the value of the relaxation time gives the decreasing rate, r_d, of the vibrational energy of that intermolecular bond induced by an individual collision with N_2 from the frequency of collision between that intermolecular bond and N_2.

The decrease in the energy of the collision part of A_n^* induced by the individual collision, ΔE_1, is calculated from the vibrational energy of the intermolecular bond placed in the collision part, E_d, and the abovementioned value of r_d at given temperature as

$$\Delta E_1 = r_d E_d.$$ \hspace{1cm} (10)

The intermolecular-vibrational relaxation subsequently induces the thermal equilibrium in the whole cluster. It achieves the decrease in the energy of the cluster, ΔE, at the individual collision. The value of ΔE is then given by

$$\Delta E = \frac{\Delta E_1}{L_n}.$$ \hspace{1cm} (11)

Fig. 1 Dissociation and stabilization rate constants as functions of the cluster size of a vibrationally excited water cluster $\langle \text{H}_2\text{O} \rangle_n^*$ at 273 K.

Fig. 2 Schematic of deactivation of a part of the vibrationally excited cluster due to the collision with surrounding cold molecule N_2 in the case of $\langle \text{H}_2\text{O} \rangle_3$ as an example.
The curve of the decreasing vibrational energy of the excited cluster after the collisions with N₂ as a function of time is then obtained from the values of ΔE and frequency of collision between the whole cluster and N₂, which is dependent on the cluster size and the cluster diameter. Thus the value of k_s can be obtained from this curve at the given cluster size.

We used $\mu = 15.75$ given from the molecular weights of the H₂O dimer and N₂. The values of k_s were estimated using the curves of the decreasing vibrational energy for various sizes of excited water clusters surrounded by N₂ at 1.01 × 10⁵ Pa.

Fig. 1 also shows the cluster-size dependence of the stabilization rate constant k_s of vibrationally excited cluster (H₂O)$_n$ at 273 K surrounded by N₂ at 1.01 × 10⁵ Pa. The stabilization rate constant decreased with increases in the cluster size because of L_n increasing, ΔE_1 being almost size-independent, and consequently ΔE given as $\Delta E_1 / L_n$ decreasing. The decreasing rate of k_s was smaller than that of k_d with the cluster size. We found from Fig. 1 that the cluster-size dependences of k_s and k_d cross at cluster sizes of approximately 6, and that k_d is larger than k_s in the smaller size region and k_s is larger than k_d in the larger size region.

5. Sticking Probability in Cluster Formation

Fig. 3 shows the cluster-size dependences of the sticking probability P_s calculated using Eq. (4) at 253, 273, and 300 K. The values of P_s dramatically increased from zero to levels close to unity in cluster-size regions of 3 through approximately 20. At the lower temperature, P_s was larger and approached unity at the smaller cluster sizes. As shown in Fig. 1, k_s was much larger than k_d at cluster sizes as large as 20. The tendency $k_s \gg k_d$ indicates that the stabilization (Eq. (3)) is dominant, and consequently most of A$_n^*$ are stabilized to form stable clusters A$_n$ without dissociation (Eq. (2)) after the incorporation of a monomer (Eq. (1)). We found that the tendency $k_s \gg k_d$ results in P_s being close to unity at cluster sizes larger than 20, as shown in Fig. 3. In contrast, P_s approaches zero with decreasing cluster size, as shown in Fig. 3, due to the tendency $k_d \gg k_s$, as shown in Fig. 1.

6. Conclusions

The technique for calculation of the sticking probability of a water molecule to a water cluster is proposed in this work on the basis of the models for the dissociation and stabilization rate constants of vibrationally excited water clusters. This technique and these models are in general applicable for van der Waals clusters and hydrogen bond clusters.

The dissociation and stabilization rate constants of vibrationally excited water clusters formed by the incorporation of water molecules into stable water clusters were found to be dependent on the water cluster size at 253, 273, and 300 K. At cluster sizes as small as approximately 3, since k_d was much larger than k_s, the sticking probability, which is a function of k_s / k_d, was close to zero. In contrast, at large cluster sizes above 20, since k_s was much larger than k_d, the sticking probability was close to unity.

Acknowledgement

This research was financially supported by the Kansai University Grant-in-Aid for progress of research in graduate course, 2005.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_n</td>
<td>collision energy between A$_n$ and A$_1$ (J)</td>
</tr>
<tr>
<td>E_n^*</td>
<td>vibrational energy of vibrationally excited cluster A$_n^*$ (J)</td>
</tr>
<tr>
<td>E_n-1^*</td>
<td>vibrational energy of A$_{n-1}$ before the incorporation of monomer A$_1$ (J)</td>
</tr>
<tr>
<td>h</td>
<td>Planck’s constant (J s)</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant (J K$^{-1}$)</td>
</tr>
<tr>
<td>k_d</td>
<td>dissociation rate constant (s$^{-1}$)</td>
</tr>
<tr>
<td>k_i</td>
<td>incorporation rate constant (cm3 s$^{-1}$)</td>
</tr>
<tr>
<td>k_s</td>
<td>stabilization rate constant (s$^{-1}$)</td>
</tr>
<tr>
<td>L_n</td>
<td>number of degrees of vibrational freedom of A$_n^*$ (-)</td>
</tr>
<tr>
<td>n</td>
<td>cluster size (-)</td>
</tr>
<tr>
<td>p</td>
<td>inert gas pressure (atm)</td>
</tr>
<tr>
<td>P_s</td>
<td>incorporation probability (-)</td>
</tr>
<tr>
<td>P_i</td>
<td>sticking probability (-)</td>
</tr>
<tr>
<td>T</td>
<td>atmospheric temperature at which the monomers, stable clusters and surrounding inert gas are present (K)</td>
</tr>
<tr>
<td>V_n^*</td>
<td>dissociation energy of A$_n^*$ (J)</td>
</tr>
</tbody>
</table>
Greek Symbols

ΔE: decrease in the energy of the cluster A_n^* induced by the individual collision (J)

ΔE_1: decrease in the energy of the collision part of A_n^* induced by the individual collision (J)

θ: characteristic temperature of the oscillator given as $\hbar \nu / k_B$ (K)

μ: reduced mass of the relaxed diatomic molecule and inert gas molecule (kg)

ν: vibrational frequency of the bond which is lost in the cluster A_n^* (s$^{-1}$)

τ: vibrational relaxation time (s)

References

