A System Evaluation for Construction Methods of Multiclass Problems using Binary Classifiers

V \(\text{Hirasawa} \) (1) Gendo KUMOI (1) T (2) a (3) j \(\text{Inazu} \)

(1) Institute of Science and Engineering, Waseda University
(2) Faculty of Engineering, Shonan Institute of Technology
(3) Department of Industrial Management Systems Engineering, School of Creative Science and Engineering, Waseda University
(4) Collage of Informatics, Aoyama Gakuin University

Abstract: Construction methods of the multiple classification systems using binary classifiers are discussed and evaluated by the system evaluation model based on rate-distortion functions. Suppose the multiple classification system constructed by \(M(\geq 3) \) categories and \(N(\geq M - 1) \) binary classifiers, then they can be solved by the matrices \(W \), where the matrices \(W \) are given by the table of \(M \) code words with length \(N \). Applying the bench-mark data (News paper articles of the 2000 Yomiuri Shinbun), the relationships between the probability of classification error \(P_r \) and the number of the binary classifiers \(N \) for a given \(M \) are investigated, and we show that the systems have desirable properties such as “Flexible”, “Elastic”, and so on.
<table>
<thead>
<tr>
<th>Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0(x))</td>
<td>Classification function</td>
</tr>
<tr>
<td>(f_1(x))</td>
<td>Regression function</td>
</tr>
</tbody>
</table>

Support Vector Machine (SVM)

\[
\begin{align*}
\text{SVM} = & \sum_{i=1}^{N} \alpha_i y_i \langle x_i, x \rangle + b \\
= & \langle w, x \rangle + b
\end{align*}
\]

Code Word Table

<table>
<thead>
<tr>
<th>Code Word</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trivial Elastic

\[d = r(d; L)\]

Marginal Elastic

\[E = \frac{\|w\|^2 + C}{\|\alpha\|^2}\]

Effective Elastic

\[E = \frac{\|w\|^2}{\|\alpha\|^2}\]
1. Exhaustive Code ($M=5, N_{\text{max}}=15, D=7$)

<table>
<thead>
<tr>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
<th>d_7</th>
<th>d_8</th>
<th>d_9</th>
<th>d_{10}</th>
<th>d_{11}</th>
<th>d_{12}</th>
<th>d_{13}</th>
<th>d_{14}</th>
<th>d_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

4.2 Exhaustive Code (exhaustive) ($M=5, N_{\text{max}}=15, D=7$)

4.3 Exhaustive Code (exhaustive) ($M=5, N_{\text{max}}=15, D=7$)

4.4 Exhaustive Code ($M=5, N_{\text{max}}=15, D=7$)

5. Exhaustive Code ($M=5, N_{\text{max}}=15, D=7$)
5.1 Hamming

\[p_e = \begin{cases} \frac{1}{2^m} & \text{if } m \leq 3 \\ \frac{1}{2^{m+1}} & \text{if } m \geq 3 \end{cases} \]

5.2 Reed-Muller (RM)

\[p_e = \frac{1}{2^M} \]

5.3

\[p_e = \begin{cases} \frac{1}{2^M} & \text{if } M = 0 \\ \frac{1}{2^{M+1}} & \text{if } M > 0 \end{cases} \]

\(M \)