A Population-based Study of Arterial Stiffness Index in Relation to Cardiovascular Risk Factors

Hideaki Sato¹, Junichi Hayashi¹, Keiichiro Harashima², Hideaki Shimazu², and Kiyoshi Kitamoto¹

¹ Department of General Medicine, School of Medicine, and
² Department of Physiology, School of Health, Kyorin University, Mitakashi, Tokyo, Japan.

We investigated the relation of arterial stiffness, considered an independent predictor of cardiovascular events, to cardiovascular risk factors in a population-based study of 1023 subjects. An Arterial Stiffness Index (ASI) was developed to evaluate arterial stiffness based on an analysis of the pulse wave amplitude pattern acquired from measurements of brachial blood pressure. In control subjects (n = 266) without any major risk factors, the ASI was 46 ± 11, and increased with age (r = 0.346). The ASI was significantly higher in women ranging from 50 to 54 years of age than in age-matched men. The ASI rose in correlation with the number of risk factors. Subjects with two risk factors showed a significantly higher ASI than those without any risk factors (54 ± 26 vs. 46 ± 11). The ASI was significantly increased in diabetic subjects with hypertension in comparison to those without hypertension. Furthermore, hyperlipidemic subjects with hypertension showed significantly higher values than those without hypertension. ASI could be a useful predictor of cardiovascular events in hypertensive subjects with multiple risk factors. J Atheroscler Thromb, 2005; 12: 175–180.

Key words: Oscillometry, Aging, Gender, Hypertension

Introduction

Most epidemiologic studies have shown that high systolic blood pressure (SBP) is a risk factor for stroke and coronary heart disease (1–3). Recent studies have determined brachial pulse pressure (PP) as a strong determinant for coronary heart disease (4, 5), stroke (6), and cardiovascular events in the general population (7–10). Increased brachial PP is considered to augment cardiovascular morbidity and mortality, since elevated SBP raises left ventricular afterload while decreased diastolic blood pressure (DBP) reduces coronary perfusion (3, 4, 8–10). A major clinical determinant of PP is arterial stiffness, which is an arteriosclerotic change that progresses under the influence of several risk factors (4, 11–14). Arterial stiffness commonly is assessed by measuring the aortic pulse wave velocity (PWV) between the carotid and femoral arteries (6, 7, 15), which can be used to evaluate the elastic properties of the aorta. The brachial-femoral PWV, another useful indicator (15, 16), requires less measurement time than aortic PWV but cannot be applied to patients with arteriosclerosis obliterans. Recently several noninvasive, reproducible methods have been developed for measuring brachial artery stiffness. The arterial stiffness index (ASI), a useful measure of brachial artery stiffness, is obtained simultaneously with the measurement of brachial arterial blood pressure (15, 17, 18) by computer-assisted oscillometry at the arm. ASI has been reported to show a good correlation with pulse wave velocity between the carotid and femoral arteries, and has been considered valuable for evaluating arterial stiffness in hypertensive patients (15). However, its relation to coronary risk factors has not been investigated in a large population. The method for evaluating ASI is simple
and convenient, requiring only a few minutes for a measurement with the subject in a sitting position. ASI enables repeated measurements of arterial stiffness in large populations. We investigated factors affecting ASI in healthy subjects, as well as correlations of ASI with cardiovascular risk factors in a general population.

Materials and Methods

Subjects

After obtaining informed consent, we studied 1023 subjects who were undergoing medical checkups in the Health and Medical Center. Ages ranged from 22 to 85 years (mean ± SD, 52 ± 11). Subjects were classified into five groups based on their medical history (Table 1). Subjects without disease were assigned to the control group, while subjects with any disease were placed in the disease group. Hyperlipidemia was defined as total serum cholesterol (TC) > 220 mg/dl, and/or low-density lipoprotein cholesterol (LDL-C) > 140 mg/dl, and/or triglyceride (TG) > 150 mg/dl. Diabetes mellitus was defined as fasting blood sugar (FBS) concentrations exceeding 110 mg/dl and/or hemoglobin A1c (HbA1c) values above 6.5%. Hypertension was defined as SBP exceeding 140 mm Hg and/or DBP exceeding 90 mm Hg. Smoking was defined as regular cigarette smoking.

The 757 subjects (522 men, 235 women; 23 to 85 years; mean age, 49 ± 12 years) with one or more risk factors (hyperlipidemia, diabetes mellitus, hypertension, and smoking) were assigned to the control group (109 men, 157 women; 22 to 84 years; mean age, 53 ± 11 years). The 266 subjects without any of the four major risk factors (hyperlipidemia, diabetes mellitus, hypertension, and smoking) were assigned to the control group (109 men, 157 women; 22 to 84 years; mean age, 53 ± 12 years).

Measurement of arterial stiffness index

An Arterial stiffness index (ASI) was measured in all subjects using CardioVision (MS-2000; IMDP, Las Vegas, NV, USA), a device that utilizes a new method for evaluating arterial stiffness while measuring blood pressure. This computer-assisted oscillometric method enables the measurement of ASI based on the pulse wave amplitude pattern acquired from a brachial blood pressure measurement (17).

The device occludes the brachial artery by increasing cuff pressure to a point above SBP. After occluding the artery, the cuff is slowly deflated automatically, and a pressure sensor attached to the blood pressure cuff measures small volumetric changes in the subject’s arm, resulting in increases in the amplitude of the pulse waves, as the volume in the brachial artery slowly increases. The amplitude of these volumetric changes slowly increases, becoming maximal when the cuff pressure is near the mean arterial pressure. At this point the elastic properties of the artery also are maximal. After the pulse wave peaks, the amplitudes of volume variation decrease as the cuff pressure returns to zero and the brachial artery is fully opened.

In calculating the ASI, the flat upper part of the pulse wave pattern was defined as the region between the highest point (100%) and 80% of the amplitude. The ASI then was calculated as the pressure range (mm Hg × 10) of the oscillometric curve corresponding with the length of the upper 5% of this flat area (Fig. 1). Arrhythmia influences the pulse wave pattern, so measurements in the presence of premature beats or atrial fibrillation were excluded.

The ASI measurement was repeated five times per sub-

Table 1. Background data for study subjects

<table>
<thead>
<tr>
<th>Number of risk factors</th>
<th>Normal (n = 266)</th>
<th>1 (n = 402)</th>
<th>2 (n = 260)</th>
<th>3 (n = 80)</th>
<th>4 (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>49 ± 12</td>
<td>52 ± 11</td>
<td>54 ± 10</td>
<td>56 ± 9</td>
<td>53 ± 9</td>
</tr>
<tr>
<td>SBP [mm Hg]</td>
<td>115 ± 12</td>
<td>123 ± 14</td>
<td>131 ± 17</td>
<td>144 ± 15</td>
<td>142 ± 14</td>
</tr>
<tr>
<td>DBP [mm Hg]</td>
<td>73 ± 8</td>
<td>77 ± 10</td>
<td>82 ± 11</td>
<td>90 ± 11</td>
<td>90 ± 9</td>
</tr>
<tr>
<td>PP [mm Hg]</td>
<td>43 ± 7</td>
<td>45 ± 9</td>
<td>49 ± 11</td>
<td>54 ± 12</td>
<td>52 ± 16</td>
</tr>
<tr>
<td>T-Cho [mg/dl]</td>
<td>184 ± 22</td>
<td>209 ± 34</td>
<td>225 ± 37</td>
<td>224 ± 32</td>
<td>218 ± 33</td>
</tr>
<tr>
<td>LDL-C [mg/dl]</td>
<td>106 ± 20</td>
<td>130 ± 30</td>
<td>140 ± 34</td>
<td>141 ± 30</td>
<td>133 ± 43</td>
</tr>
<tr>
<td>HDL-C [mg/dl]</td>
<td>63 ± 12</td>
<td>60 ± 16</td>
<td>56 ± 16</td>
<td>52 ± 14</td>
<td>49 ± 14</td>
</tr>
<tr>
<td>TG [mg/dl]</td>
<td>71 ± 27</td>
<td>106 ± 60</td>
<td>149 ± 91</td>
<td>167 ± 102</td>
<td>232 ± 171</td>
</tr>
<tr>
<td>FBS [mg/dl]</td>
<td>93 ± 7</td>
<td>96 ± 16</td>
<td>109 ± 44</td>
<td>136 ± 58</td>
<td>140 ± 37</td>
</tr>
<tr>
<td>HbA1c [%]</td>
<td>5.0 ± 0.9</td>
<td>5.3 ± 0.8</td>
<td>5.7 ± 1.5</td>
<td>6.3 ± 1.6</td>
<td>6.6 ± 1.2</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>22.5 ± 3.2</td>
<td>23.4 ± 3.1</td>
<td>24.0 ± 2.8</td>
<td>25.7 ± 3.7</td>
<td>24.7 ± 3.2</td>
</tr>
</tbody>
</table>

ject. After excluding the maximum and minimum values from these five measurements, the mean of the remaining three values was taken as representative for the subject.

Statistical analysis
Data are expressed as the mean ± 1 standard deviation (SD). When comparing means between two groups and of multiple groups, we used an unpaired t-test and Bonferroni/Dunn test, respectively. Simple regression analysis was used to assess the correlation of ASI with age or blood pressure. In all analyses, a p value below 0.05 was considered significant.

Results

Influence of aging and gender on ASI
The ASI in the control group was 46 ± 11. It gradually increased with age. The correlation coefficient of the ASI for age was 0.346 (p < 0.0001; Fig. 2). The ASI was significantly higher in women than in men (48 ± 12 vs. 43 ± 8; p < 0.01). To determine whether the gender difference is affected by aging, the group was divided into subgroups of 5-year intervals. The greatest gender difference in ASI was observed between the ages of 50–54 (42 ± 6 in men vs. 49 ± 9 in women, p < 0.01; Fig. 3).

Influence of blood pressure on ASI
In the control group, a significant positive correlation was noted between age and SBP (y = 0.361x + 97.74, r = 0.372, p < 0.0001), and between age and DBP (y = 0.163x + 64.63, r = 0.231, p < 0.0001). To adjust for aging and gender, relationships between blood pressure and the ASI were analyzed in the subgroup of control subjects (less than 50 years of age). No significant correlations was found between either ASI and SBP or ASI and DBP. In contrast, a positive correlation was indicated between PP and ASI (r = 0.174, p < 0.05; Fig. 4).

Influence of risk factors on ASI
The ASI was significantly higher in the disease group (n = 757) than in the control group (51 ± 23 vs. 46 ± 11, p < 0.05). In the 402 subjects with one risk factor, the ASI was 49 ± 19, which was not significantly different from that in the control group (Fig. 5). However, the 260 subjects with two risk factors had a significantly higher
ASI than control subjects (54 ± 26 vs. 46 ± 11, p < 0.01; Fig. 5). Subjects with three risk factors had a significantly higher ASI than those in the control group (64 ± 38 vs. 46 ± 11, p < 0.01; Fig. 5). Subjects with four risk factors had also a significantly higher ASI than the controls (64 ± 52 vs. 46 ± 11, p < 0.01; Fig. 5).

Subjects with both hyperlipidemia and hypertension had a significantly higher ASI than control subjects (67 ± 35 vs. 46 ± 11, p < 0.01; Fig. 6). While an increase in the ASI was not indicated in diabetic subjects with hyperlipidemia, an increase was indicated in diabetic subjects with hypertension (64 ± 37, vs. 46 ± 11; p < 0.05; Fig. 6).

Among subjects with three risk factors, hyperlipidemic patients with hypertension and diabetes mellitus had significantly higher ASI values than control subjects (69 ± 41 vs. 46 ± 11, p < 0.01; Fig. 7). An increased ASI was also indicated in hyperlipidemic subjects with hypertension and cigarette smoking (59 ± 29 vs. 46 ± 11, p < 0.05; Fig. 7). However, in hyperlipidemic subjects without hypertension, an increased ASI was not indicated (Fig. 7).

Fig. 4. Relationship between blood pressure and the Arterial Stiffness Index (ASI) in normal subjects under 50 years old. No correlation was evident between the ASI and the systolic blood pressure (SBP; closed circles, r = 0.007) or diastolic blood pressure (DBP; open circles, r = 0.133). A significant correlation was found between the ASI and pulse pressure (PP; shaded circles, y = 0.201x + 34.819, r = 0.174, p < 0.05).

Fig. 5. Effects of accumulation of risk factors on the Arterial Stiffness Index (ASI), which increased significantly as risk factors accumulated. **: p < 0.01.

Fig. 6. The Arterial Stiffness Index (ASI) in subjects with two risk factors. Those with both diabetes mellitus (DM) and hypertension (HT; n = 14) had a higher ASI than subjects with no risk factors (n = 262). The combination of hyperlipidemia (HL) with HT also increased the ASI significantly compared to normal subjects. The addition of cigarette smoking (S) to other risk factors did not increase the ASI. Bars represent the mean ± 1 SD. *: p < 0.05, **: p < 0.01.

Fig. 7. The Arterial Stiffness Index (ASI) in subjects with multiple risk factors. Among subgroups with three risk factors, groups with hyperlipidemia (HL) plus hypertension (HT) plus either diabetes mellitus (DM; n = 41) or cigarette smoking (S; n = 24) had a higher ASI than the normal group with none of these risk factors (n = 266). Bars represent the mean ± 1 SD. *: p < 0.05, **: p < 0.01.
Discussion

The normal range of the ASI commonly accepted in North America and Europe is a value below 70 (18). The mean value ± 1 SD in healthy Japanese subjects ranging from 22 to 84 years of age was found to be 46 ± 11. To our knowledge, this is the first paper to report a normal range of the ASI in Japanese subjects. In healthy Japanese subjects, the ASI was positively correlated with age. The data suggest that ASI is a useful marker with which to evaluate aging-related arterial stiffness in subjects without risk factors.

The risk of cardiovascular disease is well known to increase in postmenopausal women (19), and epidemiologic evidence has suggested that estrogen replacement therapy may reduce cardiovascular risk by improving the lipid profile (20, 21). Recently, estrogen supplementation has been reported to reduce the age-associated increase in arterial stiffness as determined based on pulse wave velocity (PWV) (22–24), systemic arterial compliance (22, 25), or the augmentation index (25). The female subjects in the control group in a present study had a significantly higher ASI than the male subjects, particularly between the ages of 50–54. The average age of menopause in Japan is 50 years. The gender difference in ASI may partly due to an estrogen deficiency near menopause. Measuring ASI in middle-aged women may be important in assessing menopause-related arterial stiffness.

Brachial pulse pressure, a surrogate index of arterial stiffness, has been identified as an independent predictor of future cardiovascular events (4, 8–10,26), and increased arterial stiffness has been associated with a poor cardiovascular prognosis (5–7). However, the influence of cardiovascular risk factors on arterial stiffness had not been determined in a population-based sample. In our population-based study of 1023 subjects, we found that arterial stiffness increased in correlation with the number of risk factors. Hypertensive subjects with hyperlipemia or diabetes mellitus had a greatly increased ASI. In subjects with three or more risk factors, hypertension also contributed to an increased ASI. These results indicate that high blood pressure is a leading contributor to arterial stiffness.

The present study suggests that ASI could be a useful predictor of future cardiovascular events in hypertensive patients with metabolic disorders.

Acknowledgments: We thank Mr. Toshiaki Takeichi for excellent technical assistance, and Professor Minoru Yamamoto for important advice concerning this study.

References

(14) Benetos A, Adamopoulos C, Bureau JM, Temmar M, Labat C, Bean K, Thomas F, Pannier B, Asmar R, Zureik M, Safar M, and Guize L: Determinants of accelerated progression of arterial stiffness in nor-
motensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 105: 1202–1207, 2002

