Effects of Short-Term Exercise on Adiponectin and Adiponectin Receptor Levels in Rats

Qin Zeng, Ling Fu, Kazuhiro Takekoshi, Yasushi Kawakami, and Kazumasa Isobe

Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.

Aim: Adiponectin reportedly reduces insulin resistance. Exercise has also been shown to lessen insulin resistance, although it is not well known whether exercise increases levels of adiponectin and/or its receptors nor whether it effects are dependent on exercise intensity and/or period. We previously reported that blood adiponectin levels increased by 150% in animals that exercised at a rate of 30 m/min for 60 minutes, 2 days per week, and adiponectin receptor 1 (AdipoR1) mRNA levels in muscle increased up to 4 times in response to exercise at a rate of 25 m/min for 30 min, 5 days per week for 12 weeks.

Methods: In light of this information, we examined the effects of short-term exercise on adiponectin, and adiponectin receptor levels in rats, using ELISA and real-time PCR.

Results: Our data showed that adiponectin mRNA levels in adipose tissue increased by 280% in rats exercised at a rate of 30 m/min for 60 minutes for 2 weeks and correlated with the exercise time periods. No effects of short-term exercise on adiponectin receptor 1 mRNA in muscle were observed.

Conclusion: Thus, long-term exercise may be required to regulate adiponectin receptor 1 mRNA expression in muscle and adiponectin mRNA expression in adipose tissue.

Key words: Adiponectin, Adiponectin receptor, Adrenaline, Short-term exercise

Introduction

Adiponectin is a protein hormone produced and secreted exclusively by adipocytes that regulates the metabolism of lipids and glucose, and which has anti-inflammatory properties. It has been reported to play a role in the development of cardiovascular disease, type 2 diabetes, and obesity, and its levels have been shown to be suppressed in insulin-resistant and obese animals and humans. Two types of adiponectin receptors have been identified i.e., adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2), which are primarily expressed in muscle and liver cells, respectively. It has also been reported that the expressions of AdipoR1/R2 in ob/ob mice were significantly decreased in skeletal muscle and adipose tissue.

Adiponectin levels were reported to rise in response to weight loss and glitazone therapy, but not after chronic exercise training. On the other hand, Bluhner et al. reported that 4-week physical training increased circulating adiponectin levels and Kriketos et al. also reported that one week of exercise training showed a similar effect. Jurimae et al. reported that adiponectin levels were modulated in response to a single cycle of maximal exercise in highly trained male rowers, although others failed to find such an effect in healthy subjects. Yokoyama et al. reported that aerobic exercise did not alter plasma adiponectin levels in overweight, insulin-resistant, nondiabetic individuals, similar to findings reported by Marcel et al. who failed to find an effect of moderate to intense exercise on adiponectin levels or insulin sensitivity in type 2 diabetics. Recently, it has been reported that adiponectin levels are independently related to physical exercise. Adiponectin receptor levels were reported to rise after chronic exercise training. On the other hand, Punyadeera et al. and Marcel et al. reported that they failed to find such an effect.
Thus, the effect of exercise on adiponectin or adiponectin receptors levels is still unclear, although the data perhaps suggest that intense exercise is more likely to influence adiponectin levels. The mechanisms by which adiponectin levels are regulated during exercise are unknown. We previously reported that blood adiponectin levels increased by 150% in animals that exercised at a rate of 30 m/min for 60 min 2 days per week for 12 weeks and that AdipoR1 mRNA levels in muscle increased up to 4 times by exercise at a rate of 25 m/min for 30 min 5 days per week for 12 weeks\(^{18}\). In this study, we examined the effects of short-term exercise on blood adiponectin, adiponectin mRNA and tumor necrosis factor α (TNFα) in adipose tissue, adiponectin receptor mRNA in muscle tissue, urinary catecholamine, and blood lipids levels.

Materials and Methods

Animals

All experimental procedures involving animals were approved by the University of Tsukuba Animal Care and Use Committee. Twenty, eight-week-old male SD rats were randomly assigned to either a sedentary control group \((n = 5)\) or exercise training groups \((n = 5)\) for each exercise regimen, 3 days or 5 days/wk for one or two weeks, at 30 m/min for 60 min). Rats were housed and maintained in a temperature-controlled room \((22 ± 2°C)\) on a 12:12-h light-dark cycle \((0600\) to 1800), with food and water ad libitum. Exercise training sessions of 60 min were carried out just before the beginning of the dark cycle in the room where the animals were housed. Animals were weighed at the beginning and end of the study, and sacrificed by blood harvesting after anesthetization.

Exercise Training Protocol

Animals exercised for 3 days or 1 or 2 weeks using the following regimens: 30 m/min for 60 min on a motor-driven treadmill. Both the treadmill speed and grade were gradually increased over the course of the training period to provide training overload throughout the training regimen. This training intensity was designed to elicit 75% (30 m/min for 60 min) maximal oxygen uptake based on previous work in adult rats\(^{18}\).

Tissue Samples

Animals were terminally anesthetized with diethyl ether and sodium pentobarbital \((50 \text{ mg/kg ip})\), after which blood was harvested from the abdominal aorta. The soleus muscle, liver and adipose tissue from the epididymal fat pad were quickly removed, and the tissues were then quickly frozen by immersion in liquid nitrogen. Tissues and sera were stored at −80°C until use.

Determination of Adiponectin and Catecholamine Levels

Plasma adiponectin concentration was determined by ELISA (Otsuka Pharmaceutical, Tokyo, Japan). Urine samples were collected for 24 hours after exercise \((1800\) to 1800 the next day). Urine catecholamine (adrenaline, noradrenaline, dopamine) concentrations were determined using a catecholamine autoanalyzer \((HLC-725CA, TOSOH, Tokyo)\).

Real-Time PCR

Adiponectin and TNFα mRNA expressions in adipose tissue were assessed using the Assay-on-demand protocol (Applied Biochemistry, Foster City, Calif.) that was prepared using a TaqMan PCR master reagent kit. TaqMan® Assay-on-demand was also used to determine adiponectin receptor 1 mRNA expression in muscles. The thermal cycling protocol was 2 min at 50°C and 10 min at 95°C, followed by 40 cycles of 95°C for 15s and 60°C for 1 min. Thermal cycling, fluorescence detection, and data analysis were performed on an ABL PRISM 7900 Sequence Detector using the software provided with the instrument. Adiponectin, TNFα and AdipoR1 mRNA levels were normalized to those of GAPDH mRNA.

Statistics

All values are expressed as the mean ± SE. Catecholamine values were examined after logarithm transformation. Statistical significance was determined by analysis of variance (ANOVA). Tukey-Kramer post hoc comparisons were used to determine the source of significant differences where appropriate. Pearson’s correlation test was used to examine relationships between variables. A p value < 0.05 was considered significant.

Results

Body Weights

As shown in Table 1, exercise-trained animals in this study did not show a significant difference compared to the control group in body weight, suggesting that 3 days to 2 weeks of exercise may not affect the adipose tissue weight of rats.

Adiponectin Levels

As shown in Fig. 1, rats in the 2-week group displayed adiponectin mRNA levels in adipose tissue that were 2.8 times higher than in controls \((p<0.05)\). Adiponectin and TNFα were reported to inhibit each
other's production in adipocytes; however, TNFα mRNA expression was not significantly reduced in this time period. The expression of adiponectin level was assessed in adipose tissue in order to determine whether the effect of exercise on adiponectin mRNA levels was associated with an increase in adiponectin.

Table 1. Effects of 3 days, 1 week and 2 weeks of training on initial and final body weight

<table>
<thead>
<tr>
<th></th>
<th>initial (g)</th>
<th>final (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>control (n = 5)</td>
<td>378 ± 19</td>
<td>401 ± 23 (100%)</td>
</tr>
<tr>
<td>3 days (n = 5)</td>
<td>362 ± 6</td>
<td>368 ± 5 (92%)</td>
</tr>
<tr>
<td>1 week (n = 5)</td>
<td>390 ± 10</td>
<td>403 ± 12 (110%)</td>
</tr>
<tr>
<td>2 weeks (n = 5)</td>
<td>362 ± 11</td>
<td>373 ± 16 (93%)</td>
</tr>
<tr>
<td>F</td>
<td>0.956</td>
<td>1.22</td>
</tr>
<tr>
<td>dfs</td>
<td>3, 14</td>
<td>3, 14</td>
</tr>
</tbody>
</table>

Data are the means ± SE. Compared with control. 3 days, 3 days of exercise; 1 week, 5 days of exercise/week for 1 week; 2 weeks, 5 days of exercise/week for 2 weeks. F, F value; dfs, degree of freedom.

Table 2. Effects of one-time training on blood adiponectin levels in rats

<table>
<thead>
<tr>
<th></th>
<th>pretraining</th>
<th>30 min after training</th>
<th>2 hour after training</th>
<th>F</th>
<th>dfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days (n = 5)</td>
<td>1,975 ± 281</td>
<td>1,839 ± 231</td>
<td>1,929 ± 275</td>
<td>0.07</td>
<td>2, 12</td>
</tr>
<tr>
<td>1 week (n = 3)</td>
<td>2,667 ± 184</td>
<td>3,739 ± 429</td>
<td>3,237 ± 391</td>
<td>0.18</td>
<td>2, 6</td>
</tr>
<tr>
<td>2 weeks (n = 5)</td>
<td>2,202 ± 207</td>
<td>2,343 ± 285</td>
<td>2,569 ± 294</td>
<td>0.49</td>
<td>2, 12</td>
</tr>
</tbody>
</table>

Data are the means ± SE. Compared to pretraining. F, F value; dfs, degree of freedom.

Table 3. Effects of 3 days, 1 week, and 2 weeks of training on adiponectin receptor 1 mRNA levels in the muscle of rats

<table>
<thead>
<tr>
<th></th>
<th>Muscle adipo R1 mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>38.8 ± 3.9 (100%)</td>
</tr>
<tr>
<td>3 days</td>
<td>30.6 ± 2.3 (79.0%)</td>
</tr>
<tr>
<td>1 week</td>
<td>45.6 ± 9.8 (117%)</td>
</tr>
<tr>
<td>2 weeks</td>
<td>29.5 ± 2.3 (76.0%)</td>
</tr>
<tr>
<td>F</td>
<td>2.269</td>
</tr>
<tr>
<td>dfs</td>
<td>3, 16</td>
</tr>
</tbody>
</table>

Data are the means ± SE. adipo R1, adiponectin receptor 1; F, F value; dfs, degree of freedom.

Fig. 1. Effects of 3 days, 1 week and 2 weeks of training on adiponectin and adiponectin, and TNFα mRNA levels in rat adipose tissue.

Each bar represents the % of controls and is the mean ± SE. *p < 0.05 compared with the control group. F = 0.2, dfs = 3, 14 (adiponectin protein), F = 4.022, dfs = 3, 14 (adiponectin mRNA), F = 0.62, dfs = 3, 14 (TNFα mRNA).

Fig. 2. Effects of 3 days, 1 week and 2 weeks of training on urinary catecholamine levels of exercised rats.

Each bar represents the mean ± SE. *p < 0.05 compared with the control group. F = 4.27, dfs = 3, 15 (adrenaline), F = 1.5, dfs = 3, 15 (noradrenaline), F = 0.513, dfs = 3, 15 (dopamine).
Table 4. Effects of 3 days, 1 week and 2 weeks of training on the blood lipid profile and glucose in rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>3 days</th>
<th>1 week</th>
<th>2 weeks</th>
<th>F</th>
<th>dfi</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG (mg/dL)</td>
<td>77.6±16</td>
<td>30.8±6.5*</td>
<td>47.1±11</td>
<td>38.3±4.9</td>
<td>4.46</td>
<td>3, 14</td>
</tr>
<tr>
<td>TCHO (mg/dL)</td>
<td>51.0±4.7</td>
<td>49.8±3.1</td>
<td>45±2.7</td>
<td>58.7±1.4</td>
<td>2.542</td>
<td>3, 14</td>
</tr>
<tr>
<td>PL (mg/dL)</td>
<td>84.4±3.8</td>
<td>78.2±4.0</td>
<td>73.1±2.3</td>
<td>88.3±2.1</td>
<td>2.019</td>
<td>3, 14</td>
</tr>
<tr>
<td>GLU (mg/dL)</td>
<td>196.6±9.2</td>
<td>168±16</td>
<td>162±20</td>
<td>150±4.8</td>
<td>2.23</td>
<td>3, 14</td>
</tr>
<tr>
<td>FFA (μEQL)</td>
<td>564±45.2</td>
<td>502±51</td>
<td>484±68</td>
<td>546±33</td>
<td>0.816</td>
<td>3, 14</td>
</tr>
</tbody>
</table>

Rats were housed for 48h water and food ad libitum after the cessation of training. Data are the means±SE. * p<0.05, compared with control. TG, triglyceride; TCHO, total cholesterol; PL, phospholipid. GLU, glucose; FFA, free fatty acid. F, F value; dfi, degree of freedom.

protein; our data could not show a significant difference, but the average adiponectin level in the 2-week group was 1.3 times higher than in the control group. Exercise period correlated with adiponectin mRNA expression ($r = 0.641, p < 0.005$).

As shown in Table 2, adiponectin blood levels were not changed after 30 min or 2 hours in response to a single cycle of maximal exercise, suggesting that plasma adiponectin does not respond to acute exercise in rats.

Adiponectin Receptor Levels

As shown in Table 3, AdipoR1 mRNA levels in muscle tissues of exercised rats were not significantly different between the groups, suggesting that 3 days to 2 weeks of exercise may not affect AdipoR1 mRNA expression in the muscle of rats.

Catecholamine Levels

As shown in Fig. 2, rats in the 1-week group displayed significantly higher levels of urinary adrenaline compared to controls ($p < 0.05$), suggesting that 2-week rats were adapted to exercise. Urinary noradrenaline and dopamine levels were not significantly different between the groups.

Blood Biochemical Parameters

As shown in Table 4, the serum triglyceride (TG) level in 3-day rats was significantly decreased compared to control rats ($p < 0.05$). The mean values of TG and fasting blood glucose (GLU) were decreased in exercised rats. Total cholesterol (TCHO), phosphor lipids (PL), blood glucose (GLU), and free fatty acid (FFA) levels were not significantly different between the groups.

Discussion

Our results showed that adiponectin mRNA levels in adipose tissue increased by 280% in rats exercised at a rate of 30 m/min for 60 min for 2 weeks and were significantly correlated with the exercise time periods; however, adiponectin protein levels in adipose tissue did not increase during the same time period. In our *in vitro* study using 3T3L1 adipocytes, a 300% increase in adiponectin mRNA levels induced only a 30% increase in the protein level (data not shown). In addition, a single exercise session did not affect blood adiponectin levels, as Ferguson *et al.* reported, suggesting that long-term exercise, longer than 2 weeks, may be needed to increase the protein level.

We previously reported that AdipoR1 mRNA levels in muscles increased up to 4-fold in response to exercise at a rate of 25 m/min for 30 min 5 days per week for 12 weeks; however, in this study, we could not observe such an effect with short-term exercise. Kim *et al.* reported that an increase in muscle adiponectin receptor 1 mRNA was observed in animals that exercised for 3 weeks. Chang *et al.* and Huang *et al.* reported similar results for 8 weeks. Punyadeera *et al.* reported that adiponectin receptor 1 mRNA expression in human skeletal muscle was not acutely regulated by exercise, suggesting that only long-term exercise might increase adiponectin receptor 1 mRNA expression. Taken together, 3 weeks or more of exercise is needed to induce AdipoR1 mRNA expression in muscle tissue.

It is well known that exercise improves insulin resistance and adiponectin is also an important insulin-sensitizing cytokine; however, the effect of exercise on adiponectin levels has been controversial until now. One reason why the results of the effects of exercise on adiponectin are variable may be the inhibitory modification by adrenaline released during exercise. It was reported that β-agonist decreased adiponectin mRNA expression in 3T3L1 adipocytes. In addition, in our study, no increase in adipose tissue adiponectin mRNA was observed while a significant increase in adrenaline level was observed in animals that exercised for 1 week, suggesting that the adrenaline released during exercise may inhibit adiponectin mRNA expression.

In conclusion, our findings suggested that long-term exercise may be required to regulate adiponectin
receptor 1 mRNA expression in muscle and adiponectin mRNA expression in adipose tissue. We have also suggested that adrenaline might suppress adiponectin mRNA expression in vivo; however, the mechanisms by which adiponectin or adiponectin receptor levels are regulated during exercise are still unknown. Further investigation is required to examine this question.

References
14) Marcell TJ, McAuley KA, Traustadottir T, and Reaven PD: Exercise training is not associated with improved levels of C-reactive protein or adiponectin. Metabolism Clinical and Experimental, 2005; 54:533-541