Effects of Statin on Small Dense Low-Density Lipoprotein Cholesterol and Remnant-Like Particle Cholesterol in Heterozygous Familial Hypercholesterolemia

Tsuyoshi Nozue¹, Ichiro Michishita¹, Yasuki Ito², and Tsutomu Hirano³

¹Division of Cardiology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama, Japan.
²Research and Development Department, Denka Seiken Co. Ltd., Tokyo, Japan.
³First Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan.

Aim: The effects of statin on small dense low-density lipoprotein cholesterol (sd-LDL-C) and remnant-like particle cholesterol (RLP-C) levels in heterozygous familial hypercholesterolemia (FH) have not been examined. This study aimed to clarify the effects of statin on sd-LDL-C and RLP-C levels in heterozygous FH.

Methods: Seventeen patients with heterozygous FH were randomly assigned to 2 mg/day pitavastatin or 10 mg/day atorvastatin. At baseline and 12 weeks after treatment with statin, we measured sd-LDL-C and RLP-C levels.

Results: Sd-LDL-C levels significantly decreased from 43 ± 24 to 16 ± 10 mg/dL (−63%, p=0.001) in the pitavastatin group, and from 44 ± 17 to 19 ± 10 mg/dL (−55%, p<0.001) in the atorvastatin group. RLP-C levels decreased from 8.4 ± 2.8 to 6.6 ± 2.7 mg/dL (−16%, p=0.156) in the pitavastatin group, and from 9.8 ± 4.7 to 5.9 ± 5.4 mg/dL (−45%, p=0.044) in the atorvastatin group. There were no significant differences in percent changes of sd-LDL-C (p=0.370) and RLP-C levels (p=0.097) between the two groups.

Conclusions: Sd-LDL-C measured by the heparin-magnesium precipitation method and RLP-C levels in heterozygous FH were decreased by 12 weeks of statin therapy. Statin might have additional anti-atherogenic effects by reducing not only LDL-C but also sd-LDL-C and RLP-C.

Key words: Familial hypercholesterolemia, Small dense low-density lipoprotein cholesterol, Remnant-like particle cholesterol, Statin

Introduction

Familial hypercholesterolemia (FH) is a common autosomal dominant disorder caused by a mutation of the gene for the low-density lipoprotein (LDL) receptor¹. FH is frequently associated with premature coronary artery disease (CAD), and the rate of death from CAD is several times higher than the general population¹, ²; however, there is a wide variation of coronary risk among FH patients³.

Increasing experimental and clinical evidence suggests that disturbed plasma triglyceride (TG) metabolism plays an important role in the development of premature atherosclerosis⁴, ⁵. Disturbances in TG metabolism are characterized by postprandial accumulation of lipoprotein remnants. A new remnant lipoprotein method based on the immunoseparation principle [remnant-like particle (RLP) cholesterol (RLP-C) assay] offers the possibility of separating lipoprotein remnant particles with the use of an immunoaffinity gel with coupled monoclonal antibodies against apoB-100 and apoA-I⁶, ⁷. Increased levels of RLP-C have
been associated with the development of CAD. FH patients with disturbances in postprandial lipoprotein metabolism also have higher risks for CAD.

Small dense (sd) LDL has been demonstrated to be a new risk factor for the development of CAD in Westerners as well as in Japanese. LDL particle size is usually measured by gradient gel electrophoresis using non-denaturing polyacrylamide. Recently, Hirano et al. established a simple and rapid method for the measurement of sd-LDL-C concentrations using heparin-magnesium precipitation. This method is useful for evaluating qualitative and quantitative abnormalities in LDL, and may be applicable to a routine clinical examination.

Pitavastatin (Kowa Pharmaceutical Co. Ltd., Tokyo, Japan) is new 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) developed in Japan. Total cholesterol (TC) and LDL-C levels in heterozygous FH decreased by 31% and 40% with 2 mg/day pitavastatin, respectively. It remains unclear, however, whether statin could reduce sd-LDL-C by mechanisms similar to LDL-C. Sd-LDL-C and RLP-C levels and the response to statin therapy could be relevant for understanding the heterogeneity in coronary risk among FH patients. The goal of this study was to assess the effects of statin therapy on sd-LDL-C and RLP-C levels in heterozygous FH. Furthermore, the comparative effects of two statins (pitavastatin and atorvastatin), both of which appeared to decrease TG levels, were evaluated.

Materials and Methods

Subjects

Seventeen patients with heterozygous FH (male/female = 3/14, mean age = 61 ± 11 years) were studied. FH was diagnosed according to the following two criteria: (1) primary hypercholesterolemic patients (TC level above 230 mg/dL in any age group) with tendon xanthomas, or (2) primary hypercholesterolemic patients with and without tendon xanthomas in a first-degree relative of familial hypercholesterolemic patients. After a washout period of 8 weeks, patients were randomly assigned to 2 mg/day pitavastatin or 10 mg/day atorvastatin. At baseline and 12 weeks after treatment with statin, we measured sd-LDL-C and RLP-C levels. Written informed consent was obtained from all patients.

Laboratory Determination

Blood samples were obtained after an overnight fast. Serum TC and TG levels were measured by standard enzymatic methods. Serum LDL-C and high-density lipoprotein cholesterol (HDLC) levels were measured by direct homogeneous assay using detergents (LDL-EX and HDL-EX, Denka Seiken Co. Ltd., Tokyo). Sd-LDL-C level was measured using a commercially available test kit (sd-LDL-C “Seiken”, Denka Seiken Co. Ltd.). The details and validation of this method have been described elsewhere. Serum RLP-C level was measured using an immune-separation technique (Otsuka Pharmaceuticals Co., Ltd., Tokyo). Serum lipoprotein (a) (Lp(a)) levels were assayed by a commercially available enzyme-linked immunosorbent assay (Daichi Pure Chemicals Co., Ltd., Tokyo). Large buoyant (lb)-LDL-C was calculated by subtracting sd-LDL-C from LDL-C.

Statistical Analysis

Statistical analyses were performed using Statview 5.0 software (SAS Institute, Cary, NC, USA). All values are expressed as the mean ± SD. Differences between the means were compared with the unpaired t-test. The significance of any differences in proportions was tested with Chi-square analysis. One-way analysis of variance (ANOVA) was used to compare mean changes of lipid parameters, and multiple comparisons were made by Bonferroni’s test. Significant difference was defined as p < 0.05.

Results

The baseline characteristics of the patients are shown in Table 1. Three patients were male, and 14 patients were female. The mean age was 61 ± 11 years. Mean TC, LDL-C, sd-LDL-C, and RLP-C levels at baseline were 303 ± 45 mg/dL, 218 ± 47 mg/dL, 44 ± 20 mg/dL, and 9.2 ± 3.9 mg/dL, respectively. There were no significant differences in age, gender, body mass index, TC, LDL-C, HDLC, TG, sd-LDL-C, and RLP-C levels between the two groups.

Mean LDL-C and apo B levels 12 weeks after treatment with pitavastatin decreased significantly from 201 ± 27 to 111 ± 11 mg/dL (−45%, p < 0.0001) and from 160 ± 9 to 101 ± 11 mg/dL (−37%, p < 0.0001). Mean LDL-C and apo B levels 12 weeks after treatment with atorvastatin decreased significantly from 234 ± 57 to 142 ± 52 mg/dL (−40%, p = 0.001) and from 170 ± 38 to 114 ± 32 mg/dL (−34%, p < 0.001). Serum high-sensitivity C-reactive protein (hs-CRP) levels tended to be decreased by statin therapy, but were not statistically significant.

Sd-LDL-C levels 12 weeks after treatment with statin significantly decreased from 43 ± 24 to 16 ± 10 mg/dL (−63%, p = 0.001) in the pitavastatin group and from 44 ± 17 to 19 ± 10 mg/dL (−55%, p < 0.001)
in the atorvastatin group (Table 2). Fig. 1 shows serial changes in sd-LDL-C levels during statin therapy. There was variability in the baseline sd-LDL-C levels. The highest and lowest levels of sd-LDL-C were 95 mg/dL and 24 mg/dL. Sd-LDL-C levels decreased significantly 4 weeks after treatment with statin and remained depressed to 12 weeks in both groups.

Fig. 2 shows serial changes in RLP-C levels during statin therapy. RLP-C levels decreased significantly 4 weeks after treatment with statin and tended to be depressed to 12 weeks in both groups.

Percent changes in LDL-C, apo B, sd-LDL-C, lb-LDL-C, and RLP-C levels after 12 weeks of statin therapy were −42%, −35%, −59%, −38%, and −31%, respectively (Fig. 3). There were no significant differences in the reduction of sd-LDL-C (p = 0.370) and RLP-C levels between the two groups (p = 0.097). Percent changes of sd-LDL-C levels were higher than percent changes of lb-LDL-C levels in both groups. In simple linear regression analysis, mean changes of sd-LDL-C were positively correlated with mean changes of TG (r = 0.828, p = 0.011) in the pitavastatin group, but not in the atorvastatin group (r = 0.146, p = 0.708) (Table 3). Mean changes of RLP-C levels were positively correlated with mean changes of TG in both groups (r = 0.823, p = 0.012 in the pitavastatin group and r = 0.751, p = 0.020 in the atorvastatin group) (Table 4).

Discussion

This study is the first report to examine the effects of statin on sd-LDL-C and RLP-C levels in heterozygous FH. These results suggested that sd-LDL-C and RLP-C levels in heterozygous FH were decreased by statin therapy.

Sd-LDL-C levels have been positively correlated with both TG and LDL-C levels and inversely correlated with HDL-C levels; however, the most powerful determinant of LDL size may be TG levels. It has been demonstrated that cholesteryl ester transfer protein (CETP) is also an important determinant of LDL particle size. In addition, lipoprotein lipase (LPL) activity and hepatic lipase activity have been shown to contribute to the formation of sd-LDL particles.
Table 2. Effects of statins on lipid and apolipoprotein levels

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mg/dL)</td>
<td>Pitava</td>
<td>286 ± 32</td>
<td>201 ± 23</td>
<td>206 ± 22</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>318 ± 51</td>
<td>236 ± 42</td>
<td>229 ± 43</td>
<td><0.0001</td>
</tr>
<tr>
<td>LDL-C (mg/dL)</td>
<td>Pitava</td>
<td>201 ± 27</td>
<td>118 ± 18</td>
<td>120 ± 16</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>234 ± 57</td>
<td>151 ± 53</td>
<td>143 ± 52</td>
<td>0.002</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td>Pitava</td>
<td>58 ± 15</td>
<td>59 ± 13</td>
<td>62 ± 16</td>
<td>0.720</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>62 ± 11</td>
<td>63 ± 12</td>
<td>63 ± 10</td>
<td>0.983</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>Pitava</td>
<td>165 ± 64</td>
<td>135 ± 48</td>
<td>144 ± 56</td>
<td>0.556</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>141 ± 58</td>
<td>112 ± 47</td>
<td>109 ± 55</td>
<td>0.715</td>
</tr>
<tr>
<td>RLP-C (mg/dL)</td>
<td>Pitava</td>
<td>8.4 ± 2.8</td>
<td>5.1 ± 1.6</td>
<td>5.4 ± 2.9</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>9.8 ± 4.7</td>
<td>5.3 ± 1.8</td>
<td>5.3 ± 2.8</td>
<td>0.060</td>
</tr>
<tr>
<td>Lp(a) (mg/dL)</td>
<td>Pitava</td>
<td>27 ± 23</td>
<td>27 ± 23</td>
<td>26 ± 23</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>37 ± 31</td>
<td>37 ± 30</td>
<td>37 ± 30</td>
<td>0.998</td>
</tr>
<tr>
<td>sd-LDL-C (mg/dL)</td>
<td>Pitava</td>
<td>43 ± 24</td>
<td>17 ± 9</td>
<td>18 ± 9</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>44 ± 17</td>
<td>22 ± 13</td>
<td>17 ± 10</td>
<td><0.001</td>
</tr>
<tr>
<td>lb-LDL-C (mg/dL)</td>
<td>Pitava</td>
<td>159 ± 28</td>
<td>101 ± 14</td>
<td>102 ± 16</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>189 ± 43</td>
<td>129 ± 43</td>
<td>126 ± 44</td>
<td>0.009</td>
</tr>
<tr>
<td>Apo Al (mg/dL)</td>
<td>Pitava</td>
<td>128 ± 21</td>
<td>140 ± 20</td>
<td>141 ± 24</td>
<td>0.568</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>135 ± 26</td>
<td>139 ± 23</td>
<td>142 ± 23</td>
<td>0.599</td>
</tr>
<tr>
<td>Apo B (mg/dL)</td>
<td>Pitava</td>
<td>160 ± 9</td>
<td>102 ± 13</td>
<td>105 ± 7</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>170 ± 38</td>
<td>119 ± 31</td>
<td>112 ± 30</td>
<td>0.002</td>
</tr>
<tr>
<td>Apo E (mg/dL)</td>
<td>Pitava</td>
<td>5.6 ± 1.1</td>
<td>4.3 ± 1.0</td>
<td>4.5 ± 0.9</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>5.4 ± 1.2</td>
<td>4.1 ± 0.6</td>
<td>3.9 ± 0.7</td>
<td><0.001</td>
</tr>
<tr>
<td>hs-CRP (mg/L)</td>
<td>Pitava</td>
<td>0.19 ± 0.15</td>
<td>0.15 ± 0.18</td>
<td>0.08 ± 0.05</td>
<td>0.533</td>
</tr>
<tr>
<td></td>
<td>Atorva</td>
<td>0.06 ± 0.07</td>
<td>0.05 ± 0.06</td>
<td>0.08 ± 0.17</td>
<td>0.847</td>
</tr>
</tbody>
</table>

All values are expressed as the mean ± SD.

Pitava, pitavastatin; Atorva, atorvastatin; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; RLP-C, remnant-like particle cholesterol; Lp(a), lipoprotein (a); sd-LDL-C, small dense low-density lipoprotein cholesterol; lb-LDL-C, large buoyant low-density lipoprotein cholesterol; Apo, apolipoprotein; hs-CRP, high-sensitivity C-reactive protein.

One-way analysis of variance (ANOVA) was performed for each variable.

Multiple comparisons were made by Bonferroni's test.

* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. baseline.

Fig. 1. Serial changes in small dense low-density lipoprotein cholesterol levels during statin therapy. (A): Pitavastatin group, (B): Atorvastatin group.
The relationship between LDL-PPD and CETP mass, TG levels and CETP mass concentrations, as well as gender were independent predictors of LDL-PPD and represented nearly 27% of its variance in FH. These findings indicate that a large proportion of the variability in LDL-PPD remained unexplained by these parameters. Hogue et al. reported that the genotype of the LDL receptor was associated with LDL particle size heterogeneity in FH. They showed that the LDL receptor status accounted for 5.7% of the variance in the LDL-PPD. In the present study, the highest and lowest levels of sd-LDL-C at baseline were 95 mg/dL and 24 mg/dL, revealing the variability of sd-LDL-C levels in FH. We previously reported that sd-LDL-C determined by this method was a useful marker of metabolic syndrome (MetS) in patients with CAD. In this report, mean levels of sd-LDL-C with MetS were 26.4 ± 2.6 mg/dL. Tokuno et al. reported that

Fig. 2. Serial changes in remnant-like particle cholesterol levels during statin therapy. (A): Pitavastatin group, (B): Atorvastatin group.

Fig. 3. Percent changes in LDL-C, apo B, sd-LDL-C, lb-LDL-C, and RLP-C levels after 12 weeks of statin therapy. ■ All patients, □ Pitavastatin group, ▲ Atorvastatin group.

LDL-C, low-density lipoprotein cholesterol; Apo, apolipoprotein; sd-LDL-C, small dense low-density lipoprotein cholesterol; lb-LDL-C, large buoyant low-density lipoprotein cholesterol; RLP-C, remnant-like particle cholesterol.
Simple linear regression analysis between mean change of small dense low-density lipoprotein cholesterol levels and various parameters

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pitavastatin</th>
<th>Atorvastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔTC (mg/dL)</td>
<td>0.125</td>
<td>0.333</td>
</tr>
<tr>
<td>ΔLDL-C (mg/dL)</td>
<td>0.446</td>
<td>0.263</td>
</tr>
<tr>
<td>ΔHDL-C (mg/dL)</td>
<td>0.037</td>
<td>0.065</td>
</tr>
<tr>
<td>ΔTG (mg/dL)</td>
<td>0.828</td>
<td>0.146</td>
</tr>
<tr>
<td>ΔApo A1 (mg/dL)</td>
<td>0.115</td>
<td>0.127</td>
</tr>
<tr>
<td>ΔApo B (mg/dL)</td>
<td>0.365</td>
<td>0.165</td>
</tr>
<tr>
<td>ΔApo E (mg/dL)</td>
<td>0.382</td>
<td>0.425</td>
</tr>
<tr>
<td>Δlb-LDL-C (mg/dL)</td>
<td>0.300</td>
<td>0.627</td>
</tr>
<tr>
<td>ΔRLP-C (mg/dL)</td>
<td>0.804</td>
<td>0.123</td>
</tr>
</tbody>
</table>

TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; Apo, apolipoprotein; lb-LDL-C, large buoyant low-density lipoprotein cholesterol; RLP-C, remnant-like particle cholesterol.

As several statins have been known to decrease sd-LDL levels or increase LDL particle size, our data also indicate the effect of statin on lowering sd-LDL-C levels in heterozygous FH. Percent changes of sd-LDL-C levels were 63% in the pitavastatin group and 55% in the atorvastatin group. Thus, the effect of statin on lowering sd-LDL-C levels was similar in both 2 mg/day of pitavastatin and 10 mg/day of atorvastatin.

In the present study, RLP-C levels in FH were decreased by statin therapy. Furthermore, mean changes of RLP-C levels were positively correlated with mean changes of TG in both groups. This observation was reported previously; however, not all statins could reduce RLP-C levels. Stein et al. reported that RLP-C levels were reduced by simvastatin 20 mg and by pravastatin 10 mg but not by pravastatin 40 mg in patients with combined dyslipidemia. A recent study indicated that the LDL receptor may regulate the rate of entrance of very low-density lipoprotein (VLDL) into the circulation, indicating that reduced RLP-C levels might be mainly due to decreasing hepatic VLDL synthesis in both statins.

On the other hand, mean changes of sd-LDL-C levels were positively correlated with mean changes of TG in the pitavastatin group, but not in the atorvastatin group. It is possible that the mechanisms of decreased sd-LDL-C levels might be different in both statins. Furthermore, percent changes of sd-LDL-C levels were higher than percent changes of lb-LDL-C levels in both statins. Sd-LDL particles have weaker affinity to LDL receptors than lb-LDL particles; however, a recent study indicated that the induction of LDL receptors by statin stimulated the uptake of all LDL particles, irrespective of their size. According to this report, a low dose of pitavastatin (1 mg) decreased sd-LDL-C levels by 26% and lb-LDL-C levels by 22%. We speculate that the effect of statin on lowering sd-LDL-C was not only by upregulating LDL receptors but also by decreasing hepatic VLDL synthesis and increasing LPL activities. In previous studies, statin reduced CETP levels and increased LPL activity. These factors may partially contribute to the reduction of sd-LDL-C levels. Lariviere et al. reported that 41.6% of the variation in the LDL-PPD response to atorvastatin was attributable to the initial LDL-PPD, apo E polymorphism, nature of the LDL receptor gene mutation, and change in TG levels. Thus, genetic and multiple factors associated with lipoprotein metabolism may be important determinants of statin-induced changes of LDL heterogeneity.

Sd-LDL display enhanced susceptibility to copper transition metal-induced oxidation when compared with normal-sized LDL particles, and it is recognized that oxidized LDLS are highly atherogenic. Thus, sd-LDL particles have been associated with the development of CAD. Furthermore, increased levels of RLP-C have been associated with the development of CAD.
ment of CAD. Sd-LDL-C and RLP-C might play an important role in the acceleration of atherosclerosis in heterozygous FH. Thus, pitavastatin and atorvastatin have anti-atherogenic effects by reducing not only LDL-C levels but also sd-LDL-C and RLP-C levels.

In conclusion, sd-LDL-C measured by the heparin-magnesium precipitation method and RLP-C levels in heterozygous FH were decreased by 12 weeks of statin therapy. Statin might have additional anti-atherogenic effects by reducing not only LDL-C but also sd-LDL-C and RLP-C.

Study Limitations

There are some limitations regarding the interpretation of these results and drawing conclusions. This study included only 17 patients with heterozygous FH. The sample size allowed for only limited analysis of sd-LDL-C and RLP-C levels and response to statin therapy. Furthermore, we did not perform genetic analysis of the LDL receptor, nor were CETP concentrations and LPL activities measured.

References

21) Schneider JG, von Eynatten M, Parhofer KG, Volkmer...

34) Hoogerbrugge N and Jansen H: Atorvastatin increases low-density lipoprotein size and enhances high-density lipoprotein cholesterol concentration in male, but not in female patients with familial hypercholesterolemia. Atherosclerosis, 1999; 146:167-174

