Review

The Concept of Metabolic Syndrome: Contribution of Visceral Fat Accumulation and Its Molecular Mechanism

Yuji Matsuzawa¹, Tohru Funahashi², and Tadashi Nakamura³

¹Sumitomo Hospital, Osaka, Japan
²Department of Metabolism and Atherosclerosis, Osaka University, Graduate School of Medicine, Osaka, Japan
³Kawasaki Hospital, Kobe, Japan

Although abdominal obesity or visceral obesity is considered to be one of the components of metabolic syndrome and to have an important role in a cluster of cardiovascular risks, there is no consensus about the definition and diagnostic criteria for this syndrome, probably because there is considerable disagreement about the location and definition of abdominal obesity or visceral obesity.

In this review article, the important role of visceral fat accumulation in the development of a variety of lifestyle-related diseases is shown, including cardiovascular disease based on our clinical studies using CT scans, and the mechanism of these disorders is discussed, focusing on adipocytokines, especially adiponectin.

The importance of diagnosing metabolic syndrome, in which visceral fat accumulation plays an essential role in the development of multiple risk factors, should be emphasized because lifestyle modification for the reduction of visceral fat may be very effective for the reduction of risks of this type, namely metabolic syndrome in the narrow sense.

Key words: Multiple risk factor clustering syndrome, Visceral fat, Adipocytokines (adipokines), Adiponectin

Introduction

According to the World Health Report 2002 by the World Health Organization, cardiovascular diseases based on over-nutrition and physical inactivity are rapidly increasing in developing countries as well as developed countries, and comprise almost 30% of all causes of death in the world¹. Atherosclerosis, which is present in the background of cardiovascular diseases, occurs and develops not by a single factor, but by complex of a variety of risk factors. Among them, it is well known that hypercholesterolemia, especially hyper-LDL-cholesterolemia, plays the most important role in the development of atherosclerosis. Hypercholesterolemia has been managed throughout the world since effective cholesterol-lowering drugs such as statins were developed in the past 20 years; however, it is also true that cardiovascular disease occur in subjects without hypercholesterolemia. Although diabetes mellitus, hypertension and lipid disorders, such as hypertriglyceridemia or low HDL-cholesterol, have been recognized as risk factors for atherosclerosis, the contribution of each factor is considered to be weaker than hypercholesterolemia; however, in the past 20 years, clinical and epidemiological studies have demonstrated that the coexistence of these risk factors is a strong risk factor and the multiple risk factor clustering syndrome has become as important as hypercholesterolemia in the background of cardiovascular diseases. Recently, the concept of metabolic syndrome, which almost corresponds to multiple risk factor clustering syndrome, has been noted all over the world. In this review, the mechanism of multiple risk factors cluster in one individual and why this state is so atherogenic are discussed.

In addition, the purpose of diagnosing metabolic
syndrome is to identify the type in which lifestyle modification to reduce visceral fat takes priority over drug treatment to reduce multiple risks.

Multiple Risk Factors Clustering Syndrome

The Framingham study is a well-known epidemiological study which clearly demonstrated the significance of hypercholesterolemia as a major risk factor for the occurrence of coronary heart disease; however, this study also suggested that the clustering of plural risk factors appeared to raise coronary heart disease risk. Several clinical concepts of multiple risk factor clustering syndrome were proposed around 1990 since Prof. Reaven proposed the concept of Syndrome X, in which insulin resistance is considered to play the leading role in the clustering of cardiovascular risks, such as hyperglycemia, hypertriglyceridemia, low HDL-cholesterol and hypertension, and also in the development of atherosclerosis. Prof. DeFronzo proposed a similar concept, named insulin resistance syndrome. In 1990, Prof. Kaplan proposed a multiple risk factor clustering syndrome, named the deadly quartet, in which upper body obesity was adopted as one of the four components in addition to hypertriglyceridemia, hypertension and hyperglycemia. In Japan, the study group for the Association between Host Origin and Atherosclerotic Diseases supported by the Japanese Labor Ministry investigated the medical records of 10 years of annual health checks in 94 patients with acute myocardial infarction from 1991 to 1992 among 122,051 employees from 31 industries compared with 191 age-matched controls without coronary artery disease in the same industries. It was demonstrated that subjects with a combination of 3 or more risks out of obesity, hyperglycemia, hyperlipidemia and hypertension had an increased relative risk for acute myocardial infarction of 10.56 times. These findings suggest that multiple risk factors clustering may become a strong cardiovascular risk in Asian countries as well as Western countries.

So the question is: do these common disorders gather coincidently in one individual or do some key factors play a role in the development of a variety of disorders?

The disorders which compose multiple risk factor clustering syndrome do not occur from a single cause, but are considered to occur from a complex of genetic and environmental factors. For example, some genetic factors may be involved in the development of type 2 diabetes mellitus, but a clear genetic disorder has been clarified in only a few types; therefore, type 2 diabetes mellitus develops on the basis of wide-ranging factors, including genetic and environmental factors, especially over-nutrition together with physical inactivity and its consequence, obesity. The etiology of hypertension and dyslipidemia is considered to be as complicated as that of diabetes mellitus and obesity is also involved as a common etiology. In some incidences of multiple risk factor clustering syndrome, diabetes mellitus, dyslipidemia and hypertension may gather coincidently in one individual; however, in most cases, obesity might act as a mutual key player for the development of each component. We can easily understand that this syndrome is rapidly increasing with the increase of obesity all over the world, including Asian countries as well as Western countries. As previously mentioned, insulin resistance has been considered to be a key player in multiple risk factor syndrome. There is no doubt that insulin resistance is one of the main causes of type 2 diabetes mellitus in multiple risk factor clustering syndrome. In addition, several epidemiological studies have shown the association of insulin resistance with dyslipidemia or hypertension; therefore, insulin resistance might play an important role in metabolic syndrome. However, the etiology of insulin resistance has not been fully implicated in Syndrome X or insulin resistance syndrome. It may be natural for obesity to be present upstream of insulin resistance as well as hyperglycemia, dyslipidemia and hypertension in multiple risk factor clustering syndrome.

Visceral Fat Syndrome

Although common health problems, such as diabetes mellitus, dyslipidemia and hypertension and their clusters, are closely correlated to over-nutrition and its typical consequence, obesity, previous studies on the morbidity of obesity have indicated that the severity of obesity-related diseases does not necessarily correlate to the extent of body fat accumulation, but is closely related to body fat distribution. Several classifications of obesity concerning body fat distribution have been proposed in order to distinguish the possible mechanisms of obesity-related diseases. An ancient Japanese artist showed great insight into the morbidity of obesity 800 years ago when he painted a picture of an obese woman with the title, “A very obese woman who can hardly walk” in the old Japanese picture scroll, “Yamai Zoshi” which means an illustrated scroll for various diseases. Compared with the figure of an obese girl painted by Renoir, she has marked adiposity around her abdomen (Fig. 1).

At the end of the 1940s, Prof. Vague noted that, “Fat excess is dangerous because of its metabolic com-
applications and a woman normally has twice a man's fat mass, i.e., the mass of an obese man. Though she is often as obese as a man or is fatter, she dies later and less often from metabolic complications of obesity. He proposed a classification of obesity into android type and gynoid type in 1947. His classification was based on the brachio-femoral adipomuscular ratio (BFAMR) and subjects with higher BFAM were designated to be android type in whom metabolic complications were more prevalent. Although his classification is not exactly the same as the current classification, he is no doubt a pioneer of recognizing high-risk obesity based on fat distribution.

In the early 1980s, Prof. Bijorntorp proposed a classification between central obesity and peripheral obesity, and Prof. Kissebah proposed a classification between upper body segment obesity and lower body segment obesity based on the waist/hip ratio. Our group developed a method for fat analysis using CT scans which enabled us to analyze adipose tissues in the body cavity in 1983, and we noticed a marked variation in fat distribution between subcutaneous fat and intraabdominal visceral fat. Using the CT scan method for fat analysis, we demonstrated the contribution of visceral fat accumulation to the development of metabolic disorders, including glucose intolerance and hyperlipidemia. Visceral fat accumulation is associated not only with quantitative changes in serum lipids and lipoproteins, but also with qualitative changes in lipoproteins, such as small dense LDL. The steady-state plasma glucose method by our group clearly showed that visceral fat obesity has greater insulin resistance than subcutaneous fat obesity.

In addition to these metabolic disorders, we have demonstrated that in premenopausal women, visceral fat accumulation correlates closely with systolic blood pressure. In hypertensive people, we reported a close correlation between the extent of visceral fat reduction, not subcutaneous fat reduction, and a lowering of blood pressure after weight reduction.

Visceral fat accumulation relates not only to the development of cardiovascular risks, but also relates directly to the development of cardiovascular disease. Several studies, including ours, have shown that visceral adiposity determined by CT scanning is related to coronary artery disease even in mildly obese individuals. Visceral fat accumulation is also related to the development of cardiac dysfunction and sleep apnea syndrome. From this evidence, we can conclude that visceral fat accumulation is a major risk of cardiovascular disease as well as metabolic diseases.

Metabolic Syndrome

As shown above, visceral fat accumulation might be present upstream of a variety of disorders, including cardiovascular disease; therefore, we have proposed the concept of visceral fat syndrome on the basis of our clinical researches as a similar concept to metabolic syndrome.

The concept of metabolic syndrome has been proposed by several committees, although there has been considerable disagreement over the terminology and diagnostic criteria related to this multiple risk factor clustering syndrome. The first formalized concept of metabolic syndrome was proposed by a consultation group on the definition of diabetes for the World Health Organization (WHO) as a high-risk status with multiple risk factors for cardiovascular disease. This group emphasized insulin resistance as the major underlying factor and required evidence of insulin resistance. The other major criteria came from the National Cholesterol Education Program Adult Treatment Panel III (ATP III) in 2001. ATP III adopted abdominal obesity estimated by waist circumference instead of BMI as one of five factors in addition to elevated triglyceride, reduced HDL-cholesterol, elevated blood pressure and fasting glucose as the basis of establishing the diagnosis, although it did not require abdominal obesity as an essential component. In 2005, the International Diabetes Federation (IDF) attempted to reconcile the different clinical definitions and made abdominal obesity necessary as an essential factor required in the diagnosis with particular emphasis on waist measurement as a single screening tool. The remaining four risk factors were identical to those provided by ATP III. Since the definition and diagnostic criteria were proposed by IDF, a general agreement seemed to be reached that metabolic syndrome is des-
Designated as a multiple risk factor syndrome induced by abdominal or visceral obesity; however, there have been disagreements about the location and cutoff point of the waist circumference in recent years. IDF and AHA/NHLBI representatives held discussions in an attempt to resolve the remaining differences in the definitions of metabolic syndrome and agreed that abdominal obesity should not be a prerequisite for diagnosis but that it is one of five factors, requiring the presence of any three of five risk factors. This recent definition is exactly the same as ATP III criteria for multiple risk factor clustering syndrome. These controversies may have arisen from a misunderstanding of the significance of waist circumference and the location of visceral obesity in the pathophysiology of multiple risk factor clustering syndrome.

Waist circumference is not a medical marker like blood pressure or triglyceride, but only a surrogate marker of visceral fat accumulation. Although waist circumference has been shown to correlate to visceral adiposity more strongly than BMI, it estimates total abdominal fat, including subcutaneous fat, as well as visceral fat; therefore waist circumference does not correlate with other risks, such as fasting blood glucose, triglyceride, HDL-cholesterol and blood pressure.

In Japan, metabolic syndrome has been designated to be a multiple risk factor clustering syndrome which is caused by visceral fat accumulation and in which lifestyle intervention to reduce visceral adiposity should take priority over drug treatment (Fig. 2). In other words, we diagnose metabolic syndrome in subjects with multiple risk factor syndrome if their visceral fat areas determined by CT scan is over 100 cm2, and we treat them by lifestyle intervention. The Japanese Committee for the definition of metabolic syndrome adopted a cutoff point of visceral fat area of 100 cm2 for both men and women because the number of risks increase over this point in men and women equally. Waist circumference corresponding to visceral fat of 100 cm2 is 85 cm in men and 90 cm in women. Although many different cutoff points have been adopted by different organizations and different countries, the Japanese waist circumference threshold is the only one to be estimated from visceral fat area thresholds for morbidity. Women have physiologically more subcutaneous fat than men on average, which

![Fig. 2. Background and treatment of multiple risk factor clustering syndrome.](image)

![Fig. 3. Comparison of fat distribution between men and women.](image)
makes the waist circumference larger in subjects with equal visceral fat (Fig. 3).

A Joint Scientific Statement on metabolic syndrome for “harmonizing metabolic syndrome”, published in Circulation in 2009, concluded that, in the interim, national cutoff points can be used. According to ATP III criteria and a recent statement from the joint committee, abdominal obesity is not an obligatory component and three abnormal findings out of five components would qualify a person for metabolic syndrome. This concept of metabolic syndrome may therefore include multiple risk factor clustering syndrome in which visceral fat-independent risks cluster in one individual coincidently. In this case, lifestyle intervention is less effective and drug treatment may be necessary for each risk. Therefore, multiple risk factor clustering syndrome should be divided into two types: in which visceral fat accumulation plays a key role in the development of multiple risks and cardiovascular disease (metabolic syndrome in the narrow sense), and in which multiple risks may gather coincidently. The purpose of diagnosing metabolic syndrome caused by visceral fat accumulation is to select subjects with multiple risk factors in which lifestyle modification to reduce visceral adiposity has priority over drug treatment (Fig. 2). The Japanese Committee for the Definition and Diagnosis of Metabolic Syndrome adopted the criteria for metabolic syndrome in the narrow sense, which is caused by visceral fat accumulation (Fig. 4).

The Japanese government started a new health policy by providing a specific health checkup followed by specific counseling for subjects diagnosed with metabolic syndrome according to the Japanese criteria from 2008. Health insurers were made responsible for conducting a specific checkup and counseling and approximately 56 million people aged 40-74 years old covered by the public health insurance scheme are the subjects in Japan (Fig. 5). We expect the reduction of lifestyle-related diseases, including cardiovascular disease and Government expects to control the increased medical costs of lifestyle-related diseases by this nationwide project. One of the results of a pilot study

Fig. 4. Concept of metabolic syndrome in the broad and narrow senses.

Fig. 5. Specific health checkup system and specific counseling system performed by the Japanese Government.
performed in one urban city is shown in Fig. 6. The extent of reduction of visceral adiposity clearly correlated with the improvement of risk factors.

Metabolic Syndrome and Adipocytokines (Adipokines)

An important question is why visceral fat accumulation causes common disorders; more importantly, why is this syndrome so atherogenic? In order to answer these questions, we have investigated the functions of adipose tissue, which has been traditionally regarded as a tissue passively storing excess energy in the form of triglycerides.

To elucidate the molecular mechanism of visceral fat-related diseases, particularly those in metabolic syndrome, we have investigated the biological characteristics of visceral adipose tissue and subcutaneous adipose tissue by analysis of the gene-expression profile compared with that of other mesenchymal cells. We systematically analyzed active genes by constructing a 3'-directed complementary DNA library in which the messenger RNA population was faithfully reflected. We found an unexpectedly high frequency of the genes encoding secretory proteins in adipose tissue, most of which are important bioactive substances. Of the gene group classified by functions and subcellular localization, approximately 20% of all genes in subcutaneous adipose tissue encode secretory proteins. This frequency rises to about 30% in visceral adipose tissue (Fig. 7). We classified these adipose tissue-derived bioactive substances as adipocytokines.

We found that the genes encoding plasminogen activator inhibitor type 1 (PAI-1) and heparin binding epidermal growth factor-like growth factor are highly expressed in adipose tissue. PAI-1 messenger RNA concentrations increased up to 10-fold in visceral adipose tissue during the development of fat accumulation in ventromedial hypothalamic-lesioned rats, which is an experimental animal model of obesity. In subcutaneous adipose tissue, concentrations remained unchanged. In addition to the animal model, we demonstrated that plasma levels of PAI-1 were significantly correlated with visceral adiposity, assessed by CT scanning, in humans. Circulating PAI-1 is deemed a strong risk factor for thrombotic diseases, including acute myocardial infarction, in metabolic syndrome. Heparin binding epidermal growth factor-like growth factor, a potent factor for smooth-muscle-cell proliferation, secreted from accumulated adipose tissue could also have some significance in vascular remodeling in obesity.

When we started the comprehensive genetic analysis of human adipose tissue, 40% of the expressed genes were previously unknown. The gene expressed most abundantly in adipose tissue, which we named adipose most abundant gene transcript-1, apM-1, was a novel gene. The molecule encoded by apM-1 possesses a signal peptide, collagen-like motif and globular domain, and has notable homology with collagen X, VIII and complement factor C1q. We termed the collagen-like protein adiponectin. The mouse homolog of adiponectin has been cloned as ACRP30. We established a method to measure plasma adiponectin levels using an enzyme-linked immunosorbent assay. The average levels of adiponectin in human plasma are extremely high, up to 5-10 μg/mL. Plasma concentrations are negatively correlated with BMI, whereas leptin increases with BMI. The negative correlation of adiponectin levels and visceral adiposity is stronger than between adiponectin levels and subcutaneous adiposity.

The mechanism by which plasma levels are reduced in individuals with visceral fat accumulation is not yet clarified. Co-culture with visceral fat inhibits adiponectin secretion from subcutaneous adipocytes. This finding suggests that some inhibiting factors for adiponectin synthesis or secretion are secreted from visceral adipose tissue. Tumor necrosis factor-α was reported to be a strong inhibitor of adiponectin promoter activity. The negative correlation between visceral adiposity and adiponectin levels might be explained by the increased secretion of this cytokine from accumulated visceral fat as at least one mechanism.

Plasma adiponectin concentrations are lower in
people who have type 2 diabetes mellitus than in BMI-matched controls40. The plasma concentrations have been shown to correlate strongly with insulin sensitivity, which suggests that low plasma concentrations are related to insulin resistance41. In a study of Pima Indians, individuals with high levels of adiponectin were less likely than those with low concentrations to develop type 2 diabetes. High adiponectin concentration was therefore a notable protective factor against the development of type 2 diabetes42.

Studies on adiponectin knockout mice support observations in humans. KO mice showed no specific phenotype when they were fed a normal diet but a high-sucrose and high-fat diet induced a marked elevation of plasma glucose and insulin levels. Notable insulin resistance, estimated by an insulin tolerance test during the high-sucrose with high-fat diet, also developed in knockout mice43. The supplementation of adiponectin by adenovirus transfection clearly improved this insulin resistance44. Plasma levels of adiponectin are also decreased in hypertensive humans, irrespective of the presence of insulin resistance45. Endothelium-dependent vasoreactivity is impaired in people with hypoadiponectinemia, which might be at least one mechanism of hypertension in visceral obesity46.

Most importantly, plasma concentrations of adiponectin are lower in people with coronary heart disease than in controls, even when BMI and age are matched47. A case-control study performed in Japan demonstrated that the group with hypoadiponectinemia with plasma levels less than 4 µg/mL had an increased risk of CAD and multiple metabolic risk factors, which indicates that hypoadiponectinemia is a key factor in metabolic syndrome48. A prospective study by Pischon et al.49 confirmed that high adiponectin concentrations are associated with a reduced risk of acute myocardial infarction in men. In addition to hypoadiponectinemia accompanied with visceral fat accumulation, genetic hypoadiponectinemia caused by a missense mutation has been reported, which also exhibited the clinical phenotype of metabolic syndrome50.

This clinical evidence showed that hypoadiponectinemia is a strong risk factor for cardiovascular disease.

Antiatherogenicity of adiponectin is also demonstrated in animal experiments. Adiponectin knockout mice developed more severe intimal thickening by endothelial injury than wild-type mice51. In addition, overexpression of human adiponectin by adenovirus transfection attenuated plaque formation in apolipoprotein E-KO mice52.

A large amount of adiponectin flows with the bloodstream and therefore comes into contact with the vascular walls throughout the body. It is important
to know how adiponectin interacts with vascular cells. Immunohistochemical examination with antibodies to adiponectin showed no adiponectin protein in the untreated normal vascular walls in rabbits. Markedly positive immunohistochemical staining was detected, however, in balloon-injured vascular walls. Since adiponectin has the ability to bind subendothelial collagens, such as collagen V, VIII and X, endothelial injury may prevent adiponectin from entering the subendothelial space through binding to these collagens.

Cell biological studies have demonstrated that adiponectin has multiple, potent anti-atherogenic functions. When the endothelial barrier is injured by attacking factors such as oxidized LDL, chemical substances and mechanical stress, adiponectin accumulates in the subendothelial space of vascular walls by binding to subendothelial collagen, at which point anti-atherogenic properties of adiponectin become apparent. The protein suppresses monocyte attachment to vascular endothelial cells by inhibiting the expression of adhesion molecules, such as vascular cell adhesion molecule 1, intracellular-adhesion molecule 1 and E-selectin, via the inhibition of NF-κB activation. Adiponectin also attenuates growth factor-induced proliferation of vascular smooth muscle cells by inhibiting mitogen-activated protein kinase. Adiponectin suppresses foam-cell formation by inhibiting the expression of scavenger receptor class A.

Acute coronary syndromes are considered to determine the prognosis of cardiovascular disease in which the vulnerability of plaque is an important determinant of plaque rupture. In this process, matrix metalloproteinase secreted from macrophages is thought to play an important part in plaque vulnerability. Tissue inhibitor of metalloproteinase is thought to act as a protector of against plaque rupture by inhibiting matrix metalloproteinase. Adiponectin increases the expression of messenger RNA and protein production of tissue inhibitor of metalloproteinase in macrophages via the induction of interleukin-10 synthesis. This finding suggests that adiponectin protects against plaque rupture by inhibiting matrix metalloproteinase function through the induction of interleukin-10-dependent production of tissue inhibitor of metalloproteinase.

The final prognosis of cardiovascular disease depends on cardiac function, and visceral fat accumulation was reported to be related to cardiac dysfunction. Shibata et al. have demonstrated that adiponectin-deficient mice showed enhanced concentric hypertrophy and increased mortality under pressure overload. These phenomena were associated with increased extracellular signal-regulated kinase and diminished AMP-activated protein kinase signaling in the myocardium. Adenovirus-mediated supplementation of adiponectin attenuated cardiac hypertrophy in response to pressure overload.

From these results, the pathophysiology and molecular mechanism of metabolic syndrome is summarized in Fig. 8. Visceral fat accumulation caused deregulation of adipocytokine production and secretion, especially the reduction of adiponectin, which is the main mechanism of the development of multiple risks and also direct a mechanism of cardiovascular diseases.

Summary

In this review article, the concept of metabolic syndrome is discussed. If we recognize that this syndrome is a multiple risk factor clustering syndrome caused by visceral fat accumulation, we can easily understand why plural disorders gather in one individual and what kind of molecular mechanism acts in the clustering of multiple risks. In visceral fat syndrome, namely metabolic syndrome in the narrow sense, it is natural that lifestyle modification to reduce visceral fat is the primary measure to prevent the development of cardiovascular diseases as well as its risks, including diabetes mellitus. The Japanese government policy for preventive medicine according to the Japanese concept of metabolic syndrome is also introduced. The reduction of cardiovascular disease and diabetes mellitus is expected by the new government project against metabolic syndrome in the near future.
References

3) Kannel WB, Dawber TR, Thomas HE Jr, McNamara PM: Comparison of serum lipids in the prediction of coronary heart disease. Framingham study indicates that cholesterol level and blood pressure are major factors in coronary heart disease: effect of obesity and cigarette smoking also noted. R I Med J, 1965; 48: 243-250
Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009; 120: 1640-1645
42) Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J: Adiponectin protects against development of type 2 diabetes in the Pima Indian population. Lancet, 2002; 360: 57-58
50) Kondo H, Shimomura I, Matsukawa Y, Kumada M, Takahashi M, Matsuda M, Ouchi N, Kihara S, Kawamoto T, Sumitsuji S, Funahashi T, Matsuzawa Y: Association...
ation of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes, 2002; 51: 2325-2328