Original Article

Thyroid Function Influences Serum Apolipoprotein B-48 Levels in Patients with Thyroid Disease

Satomi Mugii¹, Hiroyuki Hanada¹, Manabu Okubo¹, Daisaku Masuda², Keiko Takeoka¹, Yoh Hidaka³, Tohru Ohama², Akifumi Matsuyama⁴, Yumiko Nakagawa-Toyama⁵, Makoto Nishida⁵, Masato Ishigami⁶, Issei Komuro² and Shizuya Yamashita²

¹Division of Laboratory for Clinical Investigation, Department of Medical Technology, Osaka University Hospital, Osaka, Japan
²Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
³Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
⁴Laboratory for Somatic Stem Cell Therapy, Foundation of Biomedical Research and Innovation, Kobe, Japan
⁵Health Care Center, Osaka University, Osaka, Japan
⁶Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan

Aim: Apolipoprotein B-48 (apoB-48) is a major apolipoprotein of intestine-derived chylomicrons (CM) and CM remnants (CMR). Clinically overt hypothyroidism (OH) has been associated with premature and accelerated coronary atherosclerosis. To clarify the clinical significance of apoB-48 measurement in patients with thyroid disease, we investigated the correlations between the serum apoB-48 level and thyroid hormones.

Methods: From outpatients of Osaka University Hospital, patients with OH, subjects with subclinical hypothyroidism (SH) and subjects with normal thyroid function were collected and analyzed by measuring serum TSH, FT4 and FT3 levels. Serum apoB-48 levels were measured by a chemiluminescence enzyme immunoassay and the correlations with thyroid hormone levels or lipid profiles were assessed. These levels were compared among subjects with OH, SH and healthy controls.

Results: Serum apoB-48 level was correlated with TSH, total cholesterol (TC) and triglycerides (TG), but negatively with FT4 and FT3 level. LDL-C and HDL-C levels were not correlated with serum apoB-48 levels. Serum apoB-48 in patients with OH (7.4 ± 5.9 μg/mL) was significantly higher than in those with hyperthyroidism (5.1 ± 3.5 μg/mL; p < 0.01) and normal subjects (4.7 ± 3.7 μg/mL; p < 0.01), but decreased after levo-thyroxine replacement. ApoB-48, TG and TSH were significantly higher in SH subjects than normal subjects, suggesting that serum apoB-48 level depends on the thyroid function status, similar to TC, LDL-C and TG.

Conclusion: Increased serum apoB-48 concentrations and CMR may contribute to the increased risk of atherosclerosis and premature coronary artery disease in the hypothyroid state.

Key words: Apolipoprotein B-48 (apoB-48), Hypothyroidism (OH), Chylomicrons (CM), Chylomicron remnants (CMR), Subclinical hypothyroidism (SH)

Introduction

Thyroid hormones influence all aspects of lipid metabolism, including synthesis, transport, and degradation, especially cholesterol metabolism in hepatic cells¹, ². Overt hypothyroidism (OH) is characterized by hypercholesterolemia³. Furthermore, about 4-14% of hypercholesterolemic patients were reported to be in the hypothyroid state⁴. Hypercholesterolemia and high serum LDL-cholesterol (LDL-C) levels are strongly correlated with the development of atherosclerotic cardiovascular diseases (CVD)⁵. Thus, high
LDL-C is a major therapeutic target in the treatment of dyslipidemia. While there is controversy regarding serum triglyceride (TG) concentrations in patients with hypothyroidism, serum LDL-C and TG-rich lipoproteins (TRL), including chylomicrons (CM), very-low-density lipoproteins (VLDL), and their remnant lipoproteins, were reported to be increased in patients with hypothyroidism. Therefore, increased LDL-C and remnant lipoproteins in patients with OH are clinically important from the point of CVD prevention.

Subclinical hypothyroidism (SH) is defined as the clinical status of elevated serum thyroid-stimulating hormone (TSH) in the presence of normal free thyroxine (FT4) and free triiodothyronine (FT3). SH as mild thyroid failure has clinical importance because of its high prevalence, the risk of progression to OH and consequences including neurobehavioral, cardiac and lipid abnormalities. On the other hand, in patients with hyperthyroidism, TC and LDL-C were reduced while those of TG and HDL-C were unchanged.

It has been reported that postprandial hyperlipidemia is an independent risk factor for atherosclerotic cardiovascular diseases, which is due to the postprandial increase of TRL and their hydrolyzed products, remnants. TRL derived from the small intestines in the postprandial state are CM, and CMR are the hydrolyzed products of CM by lipoprotein lipase (LPL). CMR are taken up by monocyte-derived macrophages by many kinds of receptors and lead to foam cell formation. Many basic studies have suggested that accumulated CMR particles may promote atherogenicity in the arterial wall. Indeed, elevated intestinally derived remnant lipoproteins have been associated with an increased risk for cardiovascular diseases. CM and CMR have a characteristic apolipoprotein B-48 (apoB-48), each having one apoB-48 molecule per particle. In contrast, VLDL and their remnants (intermediate-density-lipoproteins, IDL), or VLDL remnants (VLDL-R) contain one apolipoprotein B-100 (apoB-100) molecule per particle. CMR contain apoB-48, but not apoB-100. Both CM and CMR contain one molecule of apoB-48 per particle, and it is assumed that the measurements of serum apoB-48 concentration can evaluate the synthesis and metabolism of CMR. We previously developed a novel enzyme-linked immunosorbent assay (ELISA) to measure serum apoB-48 concentration, using a microplate assay. Recently, we have established a chemiluminescent enzyme immunoassay (CLEIA) to measure serum apoB-48 concentrations.

Very few studies have so far investigated the correlation between fasting serum apoB-48 levels and the development of atherosclerosis among subjects with hypothyroidism and hyperthyroidism. In the current study, we measured the serum apoB-48 concentration in patients with hyperthyroidism and hypothyroidism and evaluated the correlations between serum apoB-48 and thyroid hormones.

Materials and Methods

Subjects

Outpatients (n=376) at Osaka University Hospital and healthy subjects (n=34) at Minami-Osaka Hospital were enrolled in the current study. We measured thyroid hormone, thyroid stimulating hormone (TSH), free thyroxine (FT4) and free triiodothyronine (FT3). The following diagnosis was made using the standard values, which were decided by Osaka University Hospital. Patients with hyperthyroidism (n=128; male 33, female 95; age 14-78) were diagnosed by FT3 >3.4 pg/mL and FT4 >1.6 ng/dL, while those with OH (n=147; male 59, female 88; age 13-88) were diagnosed by FT3 <2.0 pg/mL and FT4 <0.9 ng/dL. Subjects with SH (n=31; male 15, female 16; age 18-80) were diagnosed by TSH >3.8 μIU/ml and normal FT4, and the rest (n=104) were diagnosed as normal. Normal subjects (n=104; male 50, female 54; age 22-79) were outpatients at Osaka University Hospital with euthyroid (n=70) and healthy subjects (n=34) who underwent a medical examination at Minami-Osaka Hospital. None of the patients had disorders which affect lipid metabolism, including diabetes mellitus, renal failure, nephrotic syndrome, or pancreatitis, and patients with dyslipidemia (TC ≥300 mg/dL or TG ≥300 mg/dL) were excluded. This study was approved by the Ethics Committee of Osaka University Hospital, and all participants gave written informed consent.

Laboratory Measurements

Blood samples were collected after overnight fasting. The basal performance of a recently developed CLEIA for apoB-48 measurement kit (Fujirebio Inc., Tokyo, Japan) has been reported, and the assay was carried out on a Lumipulse f fully automated immunoassay analyzer (Fujirebio Inc.). Choltest CHO (Sekisui Medical Ltd., Tokyo, Japan) was used for the measurement of total cholesterol (T-CHO); Choltest TG (Sekisui Medical Ltd.) for triglycerides; Choltest LDL (Sekisui Medical Ltd.) for LDL-cholesterol; and Choltest N HDL (Sekisui Medical Ltd.) for HDL-cholesterol, respectively. BM2250 fully automated chemical analyzer (Nihondenshi Ltd., Tokyo, Japan)
Statistical Analyses

Statistical analyses were performed using StatFlex V5.0 statistical software. Correlation coefficients were assessed by Spearman's rank correlation coefficient. ANOVA and Dunnett's test was used to compare statistical differences between groups. Statistical significance was established at $p < 0.01$ or $p < 0.05$.

Results

In 376 patients with thyroid disorders and 34 healthy controls, the correlations between serum apoB-48, TSH and thyroid hormones (FT4, FT3) and lipid levels (TC, TG, LDL-C, HDL-C) were analyzed. As shown in Fig. 1, serum apoB-48 was positively correlated with the TSH and negatively with FT4 and FT3.

Serum apoB-48 was positively correlated with TC and TG; however there was no significant correlation between serum apoB-48 and LDL-C or HDL-C (Table 1). These data suggested that serum apoB-48 had a significant correlation with hypothyroidism.

In order to further investigate the relationship between serum apoB-48 and thyroid function, serum apoB-48 was determined in subjects with normal thyroid function ($n = 104$), patients with OH ($n = 147$) and in those with hyperthyroidism ($n = 128$). As shown in Fig. 2, serum apoB-48 was significantly higher in patients with OH ($7.4 \pm 5.9 \mu g/mL$) than in subjects with normal thyroid function ($4.7 \pm 3.7 \mu g/mL$) ($p < 0.01$) or patients with hyperthyroidism ($5.1 \pm 3.5 \mu g/mL$) ($p < 0.01$), respectively. There was no significant difference in serum apoB-48 concentrations between subjects with normal thyroid function and patients with OH (Table 1).

Table 1. Correlations between apoB-48 and other related parameters

<table>
<thead>
<tr>
<th>ApoB-48 ($\mu g/mL$)</th>
<th>n</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mg/dL)</td>
<td>299</td>
<td>0.619</td>
<td><0.01</td>
</tr>
<tr>
<td>LDL-C (mg/dL)</td>
<td>156</td>
<td>0.065</td>
<td>0.430</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td>186</td>
<td>-0.036</td>
<td>0.089</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>276</td>
<td>0.653</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Thyroid Function Influences ApoB-48

Serum apoB-48 was compared among subjects with normal thyroid function (n=104), and patients with hypothyroidism (n=147) and hyperthyroidism (n=128). Statistical significance was assessed by ANOVA and Dunnett’s test.

Table 2. Comparison of lipid profiles between normal control subjects and patients with OH and hyperthyroidism

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean ± SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mg/dL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>86</td>
<td>204.0 ± 43.9</td>
<td>**</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>100</td>
<td>211.9 ± 44.4</td>
<td>*</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>90</td>
<td>163.2 ± 34.2</td>
<td>*</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>77</td>
<td>89.0 ± 42.4</td>
<td>*</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>93</td>
<td>121.5 ± 57.6</td>
<td>*</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>83</td>
<td>97.7 ± 57.3</td>
<td>**</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>55</td>
<td>62.4 ± 14.7</td>
<td>*</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>68</td>
<td>59.8 ± 24.6</td>
<td>*</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>45</td>
<td>56.5 ± 15.7</td>
<td>*</td>
</tr>
<tr>
<td>LDL-C (mg/dL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>43</td>
<td>145.9 ± 40.1</td>
<td>*</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>60</td>
<td>121.0 ± 40.2</td>
<td>*</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>42</td>
<td>93.8 ± 26.6</td>
<td>*</td>
</tr>
</tbody>
</table>

*p < 0.05, **NS

Discussion

The accumulation of remnant lipoproteins is very important as well as LDL for the development of atherosclerotic plaque\(^{25, 26}\). Previously, the accumulation of remnant lipoproteins was shown to be related to the development of atherosclerosis in patients with acute myocardial infarction assessed by polyacrylamide gel electrophoresis\(^{32}\). For a more quantitative analysis of remnant lipoproteins, the measurement of cholesterol in remnant-like lipoprotein particles (RLP-C and RemL-C) has been developed and used for statistical analysis\(^{33}\); however, remnant lipoproteins consist of two different lipoprotein particles, chylomicron remnants and VLDL remnants (or IDL). No assessment system can distinguish these two lipoproteins. Thus, for the first time, we developed an ELISA system for the measurement of apoB-48\(^{30}\). Since one apo B-48 is present in CM and CMR per particle, the measurement of apoB-48 is critically useful for the selective and dynamic evaluation of CM and CMR metabolism\(^{28, 31}\). The accumulation of CMR is considered to be related to the development of atherosclerotic plaque, so serum apoB-48 measurement may provide important information for assessment of the global cardiovascular risk. In a previous study, we reported...
that gender affects serum apoB-48.

The increased LDL-C observed in patients with OH is clinically important because it has been associated with an increased risk for the development of CVD. Thyroid hormone binds with a thyroid hormone nuclear receptor, and the hormone-receptor complex induces SREBP-2 (sterol regulatory element-binding protein-2) and increases protein products. Since SREBP-2 upregulates the expression of LDL receptor and increases the cholesterol contents in hepatocytes, in a state of hypothyroidism, decreased SREBP-2 downregulates the expression of LDL receptor in hepatocytes, resulting in increases in serum TC, LDL-C and IDL-C. At the same time, when thyroid hormone is decreased markedly, the activities of hepatic triglyceride lipase (HTGL) and plasma cholesterol transfer protein (CETP) are reduced and the reduced activities of LPL and HTGL impaired the metabolism of CMR, as well as VLDL or LDL. Therefore, it can be speculated that L-T4 replacement therapy might be effective to improve the impaired metabolism of CM. Furthermore, there was a positive correlation between the reduction in TSH and apoB-48, suggesting that L-T4 replacement therapy improves lipid abnormalities as well as thyroid function. Ito et al. also reported that serum TC, non-HDL-C, LDL-C, apoB and RLP-C were markedly decreased after 3 months’ treatment; therefore, it can be speculated that L-T4 replacement therapy might be effective to improve the impaired metabolism of CMR, as well as VLDL or LDL.

Many studies have emerged that SH is a strong indicator for the development of atherogenesis and increased risk of CVD; however some studies have shown that SH was not associated with the risk of CVD. In order to elucidate the possible contribution of CMR in subjects with SH, we compared serum apoB-48 in these subjects with normal subjects and found that serum apoB-48 and TG were significantly higher. It was supposed that this was due to the decreased activities of LPL and HTGL in subjects with SH, resulting in the increase of TG-rich lipoproteins, VLDL or CM. Taken together, SH caused high serum apoB-48 because of the accumulation of CMR.

In conclusion, in subjects with OH and SH, high apoB-48 obviously suggested that the impairment of thyroid function accelerates the accumulation of CMR and may enhance atherogenicity, which
might be ameliorated by the administration of L-T4.

Acknowledgements

We gratefully acknowledge Fuji-Rebio Company and Sekisui Medical Co. for measuring our samples with high quality standards. The authors gratefully acknowledge Kaori Hizu, Miki Kato and Risa Wada for their excellent clerical and technical assistance. This work was partly supported by Grants-in-Aid (Nos. 11557055 and 10671070) from the Japanese Ministry of Education, Science, Sports, and Culture, and a grant from ONO Medical Research Foundation to S. Yamashita.

Conflict of Interest

No.

References

1) Zyu X, Cheng S: New insights into regulation of lipid metabolism by thyroid hormone. Current Opinion in Endocrinology, Diabetes and Obesity, 2010; 17: 408-413
2) Shin D, Osborne TF: Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2. J Biol Chem, 2003; 278: 34114-34118
12) Franklin J: Subclinical hypothyroidism: to treat or not to treat, that is the question. Clin Endocrinol (Oxf), 1995; 43: 443-444
13) McDermott MT, Ridgway EC: Subclinical hypothyroidism is mild thyroid failure and should be treated. J Clin Endocrinol Metab, 2001; 86: 4585-4590
17) Ashizawa K, Imaizumi M, Usa T, Tominaga T, Sera N,

20) Yu KC, Cooper AD: Postprandial lipoproteins and atherosclerosis. Front Biosci, 2001; 6: D332-354

35) Shin DJ, Osborne TF: Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J Biol Chem, 2003; 278: 34114-34118

40) de Bruin TW, van Barling A, van Linde-Sibenius T, drop RM, van Vuurst de Vries AR, Akveld MJ, Erkelens DW: Lipoprotein(a) and apolipoprotein B plasma concentrations in hypo- and hyperthyroidism with hyperthyroid patients before and after thyroxine replacement. J Clin Endocrinol Metab, 1999; 73: 121-126
