Original Article

Effect of Advanced Glycation End Products on Lectin-Like Oxidized Low Density Lipoprotein Receptor-1 Expression in Endothelial Cells

Sammy WM Shiu, Ying Wong and Kathryn CB Tan

Department of Medicine, University of Hong Kong, Hong Kong

Aim: Lectin-like oxidized LDL receptor-1 (LOX-1) is a class E oxidized LDL specific scavenger receptor that recognizes multiple ligands. Advanced glycation end products (AGEs) have been recently identified as other ligands to LOX-1 and shown to increase LOX-1 expressions in diabetes; therefore, we investigated the underlying mechanism involved.

Methods: Confluent human aortic endothelial cells were treated with a fixed concentration of AGE-BSA or BSA as a control in the presence or absence of either antibody of the receptor for advanced glycation end products, mammalian target of rapamycin (mTOR) inhibitor rapamycin, NF-kB inhibitor, phosphoinositide 3-kinases (PI3K) inhibitor or anti-diabetic drug metformin. After stimulation, cells were lysed and Western blot protein expression on LOX-1, rapamycin-insensitive companion of mTOR (RICTOR), the phosphorylation status of p-mTOR, p-P70S6 kinase and p-Akt were determined.

Results: AGEs induced LOX-1 expression in endothelial cells. Pretreatment either with anti-RAGE antibody or LY294002 prior to AGE-BSA decreases LOX-1 and p-mTOR expressions. Incubating endothelial cells with AGE-BSA in the presence of rapamycin down-regulated the protein expression-level of p-mTOR by 41% \(p<0.05\) and LOX-1 expression by 61.5% \(p<0.01\). Knockdown of RICTOR by RNA silencing showed a 41.5% \(p<0.01\) and 71.2% \(p<0.01\) reduction in LOX-1 and p-Akt expressions, respectively. Preincubation of endothelial cells with AGE-BSA and metformin, an anti-diabetic drug known to have an mTOR inhibition effect, significantly reduced AGE-stimulated LOX-1 expression.

Conclusion: Our results indicated that LOX-1 up-regulation induced by AGE-BSA was a receptor mediated through RAGE and is via the PI3K/PDK1/mTORC2 pathway. Metformin can reduce AGE-stimulated LOX-1 expression in endothelial cells in vitro.

Key words: Advanced glycation end products (AGEs), Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), Mammalian target of rapamycin (mTOR)

Introduction

LOX-1 is a recently cloned class E oxidized LDL specific scavenger receptor that is predominantly expressed in endothelial cells, macrophages and vascular smooth muscle cells\(^1\). LOX-1 is a type II glycol-membrane protein spanning 50 kDa in size and consists of a short N-terminal, a neck and a long C-terminal extracellular domain\(^2\). LOX-1 is a multi-ligand receptor and has been implicated in vascular inflammation, atherosclerotic plaque formation and destabilization\(^3,4\). It can bind oxidized LDL (oxLDL), phospholipids, apoptotic bodies, aged cells, activated platelets, advanced glycation end products (AGEs) and both Gram-positive and Gram-negative bacteria. Among these known ligands, the cellular consequences of oxLDL binding to LOX-1 are the most extensively studied, and activation of LOX-1 by oxLDL has a proatherogenic effect. Ligation of oxLDL to LOX-1 in endothelial cells triggers a number of signaling path-
was prepared by sequential ultracentrifugation. Oxidized LDL was prepared by incubating freshly prepared LDL (1 mg/mL) with 5 μM CuCl₂ in 0.1 mol/L phosphate-buffered saline (PBS) in the dark for 16 h at 37°C. Native LDL was used as a control and was prepared by incubating LDL with 1 mM EDTA and 1 mM DTPA for 16 hours. The modification was stopped by extensive dialysis of the reaction mixture against 0.15 M NaCl and 1 mM EDTA at 4°C.

Methods

AGE-BSA Preparation

AGE-BSA was prepared by incubating 20 mg/mL BSA (fraction V, low endotoxin; Invitrogen) with 0.5 M glucose in PBS, pH 7.2, at 37°C under sterile conditions. After 90 days of incubation, unbound low-molecular-weight products were removed by extensive dialysis against PBS. The degree of glycation on BSA (AGE-BSA fluorescence) was measured by spectrofluorometric detection at excitation of 370 nm and emission of 440 nm.

Low-Density Lipoprotein Isolation and Modification

Low-density lipoprotein (d=1.02-1.05 g/mL) was prepared by sequential ultracentrifugation. Oxidized LDL was prepared by incubating freshly prepared LDL (1 mg/mL) with 5 μM CuCl₂ in 0.1 mol/L phosphate-buffered saline (PBS) in the dark for 16 h at 37°C. Native LDL was used as a control and was prepared by incubating LDL with 1 mM EDTA and 1 mM DTPA for 16 hours. The modification was stopped by extensive dialysis of the reaction mixture against 0.15 M NaCl and 1 mM EDTA at 4°C.

Cell Culture

Human aortic endothelial cells (HAEC) (Clonetics, San Diego, CA) were grown to confluence in EGM-1 Bullet Kit Medium and passages 5-8 were used throughout the experiments. Confluent human aortic endothelial cells were kept overnight in serum-free, supplement-free EGM-1 medium and subse-

Fig. 1. Effect of NF-Kappa B inhibition on LOX-1 expression in AGE-BSA-treated endothelial cells (1A) and oxLDL-treated endothelial cells (1B). HAECs were pre-treated with the NF-Kappa B inhibitor (BAY-11075, 40 uM) 1 hour before incubation with either 100 ug/mL AGE-BSA or 100 ug/mL oxLDL. Inhibition of NF-Kappa B blocked oxLDL-induced LOX-1 expression but had no effect on AGE-BSA-induced LOX-1 expression. **p < 0.01 versus BSA-treated cells and *p < 0.05 versus native LDL-treated cells, #p < 0.05 versus oxLDL-treated cells.
AGEs and LOX-1 in Endothelial Cells

Western Blot Analysis

After stimulation, HAEC cells were washed and scraped in ice-cold PBS. After lysis in RIPA buffer, cells were further sonicated and cell supernatants were quantified by the Lowry protein assay (Biorad, Hercules, CA, USA). Then, 25 ug protein of total cell lysates was electrophoresed on 7.5% SDS-polyacrylamide gel followed by immunoblotting onto a polyvinylidene difluoride membrane (PVDF). The membrane was subsequently probed against primary antibodies specific to LOX-1 (1:1000; R&D), RICTOR, RAPTOR, and mTOR (1:1000; Cell Signaling, MA). To determine the phosphorylation status of AGE-treated endothelial cells, phospho-specific antibodies (1:1000; Cell Signaling) of p-mTOR(Ser2448), p-P70S6 (Thr389) (substrates of mTORC1 complex) and p-Akt (Ser473) (substrates of mTORC2 complex) underwent Western blot analysis as shown above. Secondary antibody of anti-rabbit IgG (1:2500) conjugated with horseradish peroxidase (HRP) was then applied to the membrane before X-ray film autoradiography. Beta-actin was employed for standardization. All experi-

Fig. 2. Effect of AGE-BSA on LOX-1 expression in endothelial cells. Cells were incubated with increasing doses of AGE-BSA for 24 hours (2A) or increasing incubation time at a fixed concentration of 100 ug/mL AGE-BSA (2B). *p<0.05 versus BSA-treated cells.

Fig. 3. Effect of AGE-BSA on phosphorylation of mTOR in endothelial cells. Cells were incubated with increasing doses of AGE-BSA for 24 hours (3A) or increasing incubation time at a fixed concentration of 100 ug/mL AGE-BSA (3B). *p<0.05 versus BSA-treated cells.

Transfection of siRNA

RICTOR, regulatory associated protein of mTOR (RAPTOR) and scrambled control siRNA were purchased from Ambion. HAEC cells were transfected with 100 nM siRNA in Optimem medium (Invitrogen, Grand Island, CA, USA) mixed with Lipofectamine 2000 according to the manufacturer’s instructions. After six hours of transfection, cells were starved for 12 hours and finally HAEC cells were treated with the indicated AGE-BSA concentrations for another six hours.

Subsequently treated with a fixed concentration of 100 μg/mL AGE-BSA in the presence or absence of mTOR inhibitor rapamycin, phosphoinositide 3-kinases (PI3K) inhibitor (LY294002), NF-kB inhibitor (BAY11-7085), metformin (Calbiochem, Rockland, MA, USA), antibody of receptor for advanced glycation endproducts, anti-RAGE (R&D, MN) or siRNA (on RICTOR or RAPTOR; Ambion, Grand Island, NY, USA).
downstream targets of both mTORC1 and mTORC2 were also evaluated. AGE-BSA increased the phosphorylation of p-mTOR (1.4-fold ± 0.1, *p* < 0.05), and predominantly the downstream target of mTORC2, p-Akt (2.6-fold ± 0.3, *p* < 0.05) and had a lesser effect on the downstream target of mTORC1, p-P70S6 kinase (1.3-fold ± 0.1, *p* < 0.05) (Fig. 4A).

Rapamycin, a specific mTOR inhibitor, was used in our experiments to inhibit the mTOR pathway. As expected, incubating endothelial cells with AGE-BSA in the presence of rapamycin down-regulated the level of protein expressions of p-mTOR, p-Akt and p-P70S6K (Fig. 4A). This resulted in a reduction of LOX-1 expression by 61.5% compared to AGE-BSA-treated cells as a control (*p* < 0.01) (Fig. 4B). Taken together, these data would suggest that AGE-BSA increased LOX-1 in HAEC cells via phosphorylation of the mTOR pathway. Unlike AGE-BSA, incubating endothelial cells with oxLDL in the presence of rapa-

Results

Both AGE-BSA and oxLDL induced LOX-1 expression in HAECs but, unlike oxLDL, the effect of AGE-BSA on LOX-1 expression was not blocked by NF-kB inhibitor (Fig. 1). Adding AGE-BSA to endothelial cells led to a dose- and time-dependent increase in LOX-1 expression (Fig. 2). To investigate whether the upregulation of LOX-1 by AGE-BSA was mediated by the mTOR pathway, AGE-BSA was added to endothelial cell culture and phosphorylation of p-mTOR was measured. Our data showed that AGE-BSA stimulated the phosphorylation of p-mTOR in a dose- and time-dependent manner (Fig. 3). Since mTOR forms two distinct functional complexes, termed mTORC1 and mTORC2,
mycin showed no reduction of LOX-1 expression, indicating that the mTOR pathway is not involved in the activation of LOX-1 by oxLDL in endothelial cells (Fig. 4C).

To further delineate whether AGE-BSA upregulates LOX-1 mainly via mTORC1 and/or mTORC2, we measured the expression of RAPTOR and RICTOR, the two associated binding proteins of mTORC1 and mTORC2, respectively. Incubation of endothelial cells with AGE-BSA had no significant effect on RAPTOR expression whereas RICTOR expression was significantly increased by 2.2-fold ± 0.3, p < 0.05. Treatment of rapamycin prior to AGE-BSA stimulation of HAEC showed a marked reduction of RICTOR protein expression by 66.7% (p < 0.05) (Fig. 5A), but had no significant effect on RAPTOR protein expression (Fig. 5B). Experiments were also performed using RAPTOR or RICTOR siRNA to inhibit mTORC1 or mTORC2, respectively. RICTOR and RAPTOR siRNA specifically blocked RICTOR and RAPTOR expression while control siRNA had no effect (Fig. 5C). Western blotting showed that RICTOR siRNA significantly decreased both LOX-1 expressions by 41.5% (p < 0.01) (Fig. 5D) and p-Akt by 71.2% (p < 0.01) (Fig. 5E), whereas no changes were observed with RAPTOR siRNA.

To investigate whether upstream activation of the mTOR pathway by AGE-BSA is receptor-mediated by the receptor for advanced glycation end products (RAGE), HAEC cells were pretreated with anti-RAGE antibody (R&D, MN) 1 hour prior to AGE-BSA incubation. Blocking RAGE activation with AGE-BSA led to a 58.4% reduction (p < 0.05) in the level of phosphorylation of p-mTOR (Fig. 6A) and a 33.3%
Shiu et al. RAGE and activation of the mTOR pathway. Since metformin is an anti-diabetic drug known to have an inhibitory effect on mTOR signaling, we therefore investigated whether metformin can attenuate the effect of AGEs on LOX-1 expression in endothelial cells. Our data showed that AGE-BSA increased RAGE expression by 1.4-fold \((p < 0.05)\) and adding metformin did not change RAGE expression in AGE-stimulated endothelial cells; however, the addition of metformin reduced p-mTOR by 41.4\% \((p < 0.01)\) and decreased LOX-1 expression by 61.5\% \((p < 0.01)\) in these cells (Fig. 8).

Discussion

Diabetes is associated with a high risk of atherosclerosis and recent evidence suggests that the scaven-
mTORC1 and mTORC2, which have distinct physiological functions and are regulated by different mechanisms. mTORC1 is composed of mTOR, RAPTOR, mLST8 and PRAS40 and regulates a number of major cellular processes including nutrient metabolism, ribosome biogenesis, and mRNA translation. mTORC2 consists of mTOR, mLST8, sin1, RICTOR, Protor and PRR5 and is found to regulate Akt activity and cytoskeleton arrangement. Rapamycin is an mTOR inhibitor and recent data suggest that the inhibition of mTORC1 and mTORC2 by rapamycin may be dose- and time-dependent. Rapamycin interacts with the intracellular receptor FK506 binding protein 12 (FKBP12), forming a complex with high affinity for mTOR, and preferentially disrupts mTORC1 activity. At higher concentrations of rapamycin, there is FKBP12-independent suppression of mTOR.

Fig. 9. Proposed signaling pathway involved in AGE-induced LOX-1 expression in endothelial cells. AGEs bind to their cellular receptor, RAGE, and activate PI3K/PDK1 with subsequent phosphorylation of mTOR. Triggering of mTOR pathway is mainly via mTORC2/Akt signaling pathway and thereby induces LOX-1 expression.

that mTOR has a role in cardiac hypertrophy and cardiovascular-related disorders such as atherosclerosis, and our data add to the body of evidence implicating mTOR in atherosclerosis.
mTOR signaling. Prolonged rapamycin treatment inhibits the assembly of mTORC2 and reduces the levels of mTORC2 to below those needed to maintain Akt/PKB signaling. Rapamycin used in our experiments was in the medium range concentration (1 μM) and we used a shorter incubation time than recently published studies. This concentration of rapamycin applied to AGE-BSA-stimulated EC culture was able to suppress both mTORC1 and mTORC2 activities. Using the RNA silencing technique, knockdown of RICTOR but not RAPTOR led to a marked decrease of the phosphorylation status of Akt (p-Akt) and LOX-1 expression upon AGE incubation. Hence, mTORC2, but not mTORC1, is the major associated protein complex responsible for the upregulation of LOX-1 expression under AGE stimulation. Taken together, mTORC2 and Akt are the key regulatory signaling molecules for AGE-induced expression of LOX-1. Mukai et al. have also shown that the induction of LOX-1 expression by heparin-binding epidermal growth factor-like growth factor in vascular smooth muscle cells is mediated partly via Akt signaling.

We also investigated the upstream activation of the mTOR by AGEs and showed that the induction of LOX-1 expression by AGEs is first mediated by its specific receptor RAGE, and the subsequent activation of mTOR is through the upstream signaling cascade PI3K/PDK1. This is similar to the findings of Dornmond et al. who reported that the expression of vascular endothelial growth factor induced by CD40 was mediated by the mTOR pathway in endothelial cells via the upstream activation of PI3K. RAGE is a multi-ligand receptor and ligation of RAGE by its ligands has been shown to activate various signal transduction cascades, including the family of mitogen-activated protein kinases (MAPKs), members of the JAK-STAT signaling family, CDC42, RAC1 and other members of the Ras family, SRC1, members of the SMAD signaling family and PI3K. The activation of RAGE by AGEs has been shown to cause endothelial dysfunction with increased expression of vascular cells. In addition to these proatherogenic effects we have shown for the first time that AGE/RAGE interaction can induce LOX-1 expression. Since this is mediated by mTOR signaling, the addition of metformin significantly attenuates the induction of LOX-1 by AGEs. This is in keeping with recent evidence suggesting that metformin has a beneficial effect on the vasculature. The United Kingdom Prospective Diabetes Study demonstrated that in obese type 2 diabetic patients, metformin reduced the risk of myocardial infarction more than sulphonylureas or insulin. The vasoprotective role of metformin is largely independent of its hypoglycemic action and has been partly ascribed to the beneficial effect of metformin on body weight and plasma lipids. In addition, it has been reported that metformin has favorable pleiotropic effects on the cardiovascular system.

In conclusion, the receptor RAGE, PI3K and mTORC2/RICTOR are involved in the regulation of AGE-induced LOX-1 expression in endothelial cells (Fig. 9). AGEs bind to their specific receptor RAGE, activate the PI3K/PDK1/mTORC2 signaling pathway and thereby induce LOX-1 expression. The induction of LOX-1 by AGEs may contribute to the increased atherosclerotic risk in diabetes and this process can be inhibited by metformin in vitro.

Conflict of Interest

None.

References

8) Li D, Sldeen T, Romeo F, Mehta JL: Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells; the
11) Mehta JL, Li DY, Chen HJ, Joseph J, Romeo F: Inhibition of LOX-1 by statins may relate to upregulation of eNOS. Biochem Biophys Res Commun, 2001; 289: 857-861
31) Glazer HP, Osipov RM, Clements RT, Sellke FW, Bianchi C: Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling. Cell Cycle, 2009; 8: 1738-1746
35) Sarbassov DD, Guertin DA, Ali SM, Sabatini DM: Phos-
phorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005; 307: 1098-1101

