Background to Discuss Guidelines for Control of Plasma HDL-Cholesterol in Japan*

Shinji Yokoyama1, Shizuya Yamashita2, Shun Ishibashi3, Hirohito Sone4, Shinichi Oikawa5, Kohji Shirai6, Takao Ohta7, Hideaki Bujo8, Junji Kobayashi9, Hidenori Arai10, Mariko Harada-Shiba11, Masaaki Eto12, Toshio Hayashi13, Takanari Gotoda14, Hiroaki Suzuki15 and Nobuhiro Yamada16

1Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
2Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
3Division of Endocrinology and Metabolism, Diabetes Center, Department of Medicine, Jichi Medical University Graduate School of Medicine, Shimotsuke, Japan
4Division of Endocrinology and Metabolism, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
5Division of Endocrinology and Metabolism, Department of Medicine, Nippon Medical School, Tokyo, Japan
6Internal Medicine, Sakura Hospital, School of Medicine, Toho University, Sakura, Japan
7Department of Child Health and Welfare (Pediatrics), Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
8Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba, Japan
9Department of Lipidology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
10Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
11Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
12School of Pharmaceutical Sciences, Ohu University and Department of Medicine, Ohu University Hospital, Kohriyama, Japan
13Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
14Department of Clinical and Molecular Epidemiology, 22nd Century Medical and Research Center, University of Tokyo Hospital, Tokyo, Japan
15Department of Endocrinology and Metabolism, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
16University of Tsukuba, Tsukuba, Japan

A decrease in high density lipoprotein-cholesterol (HDL-C) is a strong risk factor for atherosclerotic disorders in Japan, probably more important than an increase in low density lipoprotein-cholesterol (LDL-C). While there are rational grounds for the argument that elevation of HDL-C leads to decreased risk, there has as yet been no direct evidence of such an effect. If elevation of HDL-C decreases the risk, this effect is expected throughout the normal range of HDL-C or perhaps even higher than that. Simulation based on epidemiological data indicated that it may eventually reduce the incidence of ischemic heart disease by 60-70% in Japan. In the risk management guideline, “low” HDL-C is presently defined as 40 mg/dL or below. While there is no evidence that strongly urges a change in this definition, the results of epidemiological studies support “The higher the HDL-C level, the lower the risk,” even in the “normal range”. Elevation of the HDL-C level may reduce the risk, probably at least up to 70 mg/dL; however, there are no supportive data for this effect still being obtained over 80 mg/dL. Patients with homozygous CETP deficiency should be followed-up while controlling other risk factors, so as not to dismiss the possibility of a risk increase with an extremely elevated HDL-C level.

Key words; HDL, LDL, Guidelines, NNT, Prevention

Address for correspondence: Shinji Yokoyama, Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Japan
E-mail: syokoyam@med.nagoya-cu.ac.jp
Received: August 17, 2011
Accepted for publication: September 29, 2011

Clinical Relevance of HDL-C Management

Numbers of epidemiological studies have established that the risk of coronary artery disease increases as plasma HDL-C decreases, and decreases as it increases. In addition, many experimental approaches
have demonstrated that cholesterol is extracted by HDL particles in the culture medium from cultured cells, including macrophages overloaded with cholesterol.

From these two lines of evidence, HDL is believed to be a “preventive factor” against atherosclerosis. This view is strongly associated with the hypothesis that HDL plays a central role in the recovery of cholesterol molecules from tissues and organs, which cannot be catabolized in peripheral cells, and in their transport to the liver for conversion to bile acids. From the viewpoint of public health, many research results suggest that a decrease in HDL-C contributes more than an increase in LDL-C to the development of ischemic heart disease in Japan. In studies conducted at Nagoya City University, for example, narrowing of the coronary artery was more closely related to triglycerides (TG) and HDL-C than to total cholesterol (TC) or LDL-C1, 2, and this tendency is commonly observed in many other reports. HDL-C is thus suggested to be a strong determinant of atherosclerosis in Japan and perhaps a more important risk factor than LDL-C from a public health point of view.

HDL is smaller (12 nm or less in diameter) than other lipoproteins, abundant in protein and does not contain much TG, so it has a greater hydrated density than other lipoproteins (d=1.063-1.21). Similarly to other plasma lipoproteins, however, HDL functions to transport cholesterol among cells or organs using the flow of blood or extracellular fluid. Cholesterol, an essential molecule for the life of animals, requires a number of steps and plenty of energy for synthesis, and its dietary intake is not always guaranteed; therefore, the animal body has developed systems to use cholesterol sparingly as a precious material. As a result, little cholesterol is converted to energy in its catabolism, and, with the exception of a very small amount used for the production of steroid hormones, most cholesterol is transported to the liver for conversion to bile acids and is recycled an reused in the intestine before excretion. Its steroid backbone is not degraded in the metabolism in the animal body and finally broken down by microorganisms in the environment. Therefore, cholesterol molecules must be released from most somatic cells for metabolic homeostasis, and HDL receives these cholesterol molecules for their transport. Cholesterol is converted to cholesteryl acyl-ester (CE) as a fatty acyl chain and transferred from phosphatidylcholine to its hydroxyl group to form an ester bond, for packing cholesterol molecules into the core of HDL. CE is recovered by the liver directly from HDL by a selective uptake reaction, or as LDL particles after being transferred to apolipoprotein B-containing lipoproteins by CE transfer protein (CETP). As a result of these activities, HDL is considered to exert a preventive effect against atherosclerosis as it interferes with the excessive accumulation of cholesterol in cells from LDL, etc., by extracting it.

No drug has been marketed yet to independently increases HDL-C; therefore, the question of whether increasing HDL-C is effective for preventing and treating atherosclerotic disorders has not been answered. However, researchers have recently directed more attention to HDL and, accordingly, more research results on HDL metabolism have recently accumulated. Much effort to develop drugs targeting HDL has been initiated. On the other hand, some existing drugs are known to increase plasma HDL-C. Drugs that reduce TG generally increase HDL-C, primarily because these drugs reverse low HDL-C induced by high TG through CETP3. In addition, fibrates have been suggested to directly increase HDL production4. Many clinical studies have also shown that statins elevate HDL-C as well as decreasing LDL-C. Concerning their mechanism, statins have recently been reported to increase HDL synthesis in the liver, unlike their effects in peripheral tissues5. The mechanism of the increase in HDL through exercise and alcohol intake has not been sufficiently elucidated. As mentioned below, the question of whether HDL-C increase by inhibiting CETP prevents atherogenesis has been shelved because of the failure to develop a CETP-inhibiting drug, perhaps due to a business-oriented strategy6.

Position of HDL in Risk-Reducing Strategies

Large-scale clinical studies targeted to high LDL-C and high TG, major risk factors of atherosclerotic diseases, such as ischemic heart disease, have indicated that ischemic heart disease can be prevented by reducing LDL-C and TG and, particularly, that mortality due to the disease can be lowered by controlling the LDL-C level, with a consequent reduction in the total number of deaths in the high-risk group. In addition, based on stratified analysis of the results of many clinical trials, the conclusion has been reached that an increase in HDL-C contributes to the prevention of diseases as a “statistically independent factor”. In consideration of the above-stated marked epidemiological contribution of HDL-C as a “negative risk factor” and the significant “indirect evidence” of an increase in HDL-C in the prevention of atherogenesis, the argument that a standard should be set for the control of HDL-C appears to be well grounded. However, it is also true that a consensus concerning
HDL-C management, similar to that in evidence-based quantitative guidelines for the control of LDL-C and the management and treatment of high TG, is difficult to reach at present, when no therapeutic technique specifically targeted to increase HDL-C has reached a practical level and there is no direct evidence concerning the prevention and treatment of atherosclerotic disorders using such a technique. Thus, any therapeutic guideline regarding HDL-C is merely a “proposal” based on indirect circumstantial evidence until the results of a large-scale clinical trial of a technique to specifically increase HDL-C become available.

Recently, some negative implications have been spread regarding the anti-atherosclerotic effect of an increase in HDL-C, inviting some confusion in the discussion. One is the discontinuation of a large-scale clinical study on the prevention of ischemic heart disease by increasing HDL-C, carried out to develop the CETP inhibitor torcetrapib, due to an increase in the mortality rate in the treated group9. Another is a large-scale epidemiological study reporting that a mutation to cause dysfunction of ABCA1, a rate-regulating protein of HDL biogenesis, is not likely to be a risk factor of ischemic heart disease7. The first report appears to support the contention of researchers arguing that “an increase in HDL-C by CETP inhibition has no anti-atherosclerotic effect,” and allowed the generalized assertion that “the HDL-C increasing strategy is a mistake” to emerge; however, these reports do not necessarily mean the failure of CETP inhibitors themselves, and the pressor effect of a particular drug, torcetrapib, is likely to have led to such results. This incidence postponed an answer to the question of whether increasing HDL-C with a CETP inhibitor is a good idea, the most important medical issue, and markedly complicated the strategy for developing HDL-C elevating agents in general. Also, studies on ABCA1 mutation have shown that the maximum decrease in HDL is about 20%, suggesting that this does not necessarily reject the benefit of high HDL-C.

Under these circumstances, the position has not changed that an elevation of HDL-C is an important part of the anti-atherosclerotic strategy, including CETP inhibition. The above discussion may be summarized as follows: 1) a decrease in HDL-C is a strong risk factor for atherosclerotic disorders, 2) there are rational grounds for the supposition that this risk can be reduced by correcting low HDL-C (increasing HDL-C), but 3) no direct evidence has been obtained that increasing HDL-C is effective for the prevention and treatment of atherosclerotic disorders, 4) changes in HDL-C may include changes in the number and size of HDL particles, and the difference in their clinical significance may become a problem in the future.

Simulation of Atherosclerosis Prevention by Increasing HDL-C

There are qualitative scientific grounds for lowering the LDL-C level to reduce the risk of atherosclerotic disorders or, more specifically from an evidence-based viewpoint, to reduce the probability of the occurrence of ischemic heart disease; however, to prepare specific guidelines for diagnosis and treatment, quantitative criteria are considered indispensable. This is a problem with the concept in setting therapeutic goals for target groups. A quantitative profile of increases in the risk associated with elevations of the LDL-C level is necessary, and, if possible, results directly showing that the treatment reverses this curve of increasing risk must be presented. It is not impossible to set medical goals according to this parameter alone, but how criteria are set markedly affects the cost-effectiveness of treatment depending on the distribution of the HDL-C level and demographic composition of the target population; therefore, simulation involving these factors is one of the tasks that must be implemented to devise guidelines.

Fig.1B shows the relationship between the LDL-C level and incidence (per 1,000 people) of myocardial infarction (lethal/non-lethal) in the JLIT, a cohort study that followed up a simvastatin-treated group for 5 years8. From this graph, the distribution of the HDL-C level in Japanese of corresponding ages (Fig.1A)9, and the population composition of the Japanese by age, the number of people needed to treat (NNT) and number of patients in whom the disease is prevented can be calculated when the control target is fulfilled 100% by reducing LDL-C (Fig.1C). According to this calculation, the primary prevention efficacy, expressed as the inverse of NNT, is high at a target LDL-C level of 140 mg/dL but begins to fall rapidly as it is reduced to 120 mg/dL. Reflecting this, the incidence of myocardial infarction shows no further decrease when the target control level is set lower than 140 mg/dL. According to this analysis, roughly 140 mg/dL is considered to be medically and medico-economically appropriate as the target control level of LDL-C for primary prevention, at least on the basis of the results of the JLIT. In this case, the maximum preventive effect is 30-35% for myocardial infarction, which is in close agreement with the results of the MEGA study, the only large-scale interventional study of ischemic heart disease conducted in Japan using a statin10.
Fig. 2B shows the decreases in the risk of ischemic heart disease associated with elevations of the HDL-C level in 3 epidemiological studies with prospective risk evaluation carried out in Japan including the JLIT\(^8,11,12\). While it is difficult to directly compare the incidences because the clinical definition of the endpoint varied among the studies, the peak decrease of the risk associated with increased HDL-C is less notable than that associated with the change of LDL-C in all studies. In other words, HDL-C-dependent decreases in the risk were observed even at HDL-C exceeding 60 mg/dL in all 3 studies. Fig. 2C shows the results of simulation similar to that of LDL-C performed using the results of the JLIT, which analyzed the therapeutic outcomes, on the basis of the HDL-C distribution curve in Japanese (Fig. 2A)\(^9\) and the population composition. Since decreases in the risk associated with increases in HDL-C have not been directly demonstrated, the simulation was based on the hypothesis that increases in the risk associated with decreases in HDL can be reversed by increasing HDL-C. In contrast with the results concerning LDL, little decrease or peaking of the preventive efficacy associated with increased HDL-C was observed with an HDL-C level over 60 mg/dL. Reflecting this, the preventive effect against myocardial infarction could still be increased by raising the HDL-C level beyond 60 mg/dL. These results suggest that, under the hypothesis that the risk of myocardial infarction is reversibly reduced by elevating HDL-C, myocardial infarction can be prevented in 60-70% of the Japanese population at risk.

As far as these results are concerned, it can be concluded that the criterion of a “low HDL-C level” is unnecessary in guidelines for the control of HDL-C, and that the higher the HDL-C the better; however, according to the results in Fig. 2A, some studies have shown relatively large increases in the risk associated with decreases in HDL-C at about 50 mg/dL or below and, particularly, below 40 mg/dL; therefore, it may be reasonable to set a “caution level” around here. On the other hand, views on high HDL-C are divided. First, there is no epidemiological evidence indicating that higher HDL-C is better, even when it exceeds 60 mg/dL. This is probably because the population falling in this category is small (even though high HDL-C is relatively frequent in Japan) and cardiovascular incidence is low, making it difficult to obtain significant results.

In addition, the controversy is further complicated by the inclusion in this category of cases of homozygous CETP-deficient patients, in which elevations of HDL may not be considered to decrease the

Fig. 1. Prevention of ischemic heart disease in Japanese by reducing LDL.

A: Distribution curve of the plasma LDL-C level in Japanese\(^9\). B: Relationship between the plasma LDL-C level and risk of “myocardial infarction” observed in the JLIT\(^8\). C: Simulation of the prevention of “myocardial infarction” based on Graphs A and B and demographic data for Japanese. Solid lines represent the inverse of NNT (1/1,000) as an indicator of the treatment efficacy for managing lipoproteins to a target. The value of each horizontal segment is the efficacy when reaching a target LDL-C value at the left end of the segment in all Japanese at ages covered by the JLIT. Each horizontal segment of broken lines represents the number of MI patients when LDL is reduced to or lower than the level of the right end of the segment.
The argument that increased HDL does not necessarily contribute to decreased risk is supported by the absence of a further decrease in the risk when the HDL-C increases above 70 mg/dL and the increased risk in patients with a homozygous CETP defect; however, HDL-C is usually 80 mg/dL or higher and often reaches 100-200 mg/dL or even higher in patients with a homozygous CETP defect, and such high HDL-C should be considered separately from regular high HDL-C. Still, researchers are not in agreement concerning the increase in risk. In this sense, the differentiation of homozygous CETP deficiency is necessary in patients showing HDL-C exceeding 80 mg/dL, and there is no clinical or experimental evidence pointing to any conclusion about whether HDL-C should be maintained above this level. Nevertheless, the high prevalence of CETP deficiency among Japanese (1/20 for D442G and 1/100 for I144A) may have a limited but significant impact on the association between high HDL and atherosclerosis in Japanese.

Proposal of Standards for Management of the HDL-C Level

On the basis of the above discussion, this article summarizes a proposal for the management of the HDL-C level as follows:

1) The evidence status is summarized as (1) A decrease in HDL-C is a strong risk factor for atherosclerotic disorders, particularly in Japan and, from the viewpoint of public health, it may be a more important risk factor than an increase in LDL-C; (2) While there are rational grounds for the argument that elevated HDL-C leads to a decreased risk, (3) there is as yet no direct evidence that elevating HDL-C is effective for the prevention and treatment of atherosclerotic disorders.

2) If elevations of HDL-C through interventional measures cause reversible decreases in the risk, this effect is expected, at least, up to 60 mg/dL or higher, and a simulation indicated that it eventually reduce the incidence of ischemic heart disease in Japan by 60-70%.

3) In risk management, high HDL-C is presently defined as 40 mg/dL or below. While there is no evidence that strongly urges a change in this definition, the results of epidemiological studies support “the higher the HDL-C level, the lower the risk,” even in the “normal range” so that elevation of HDL-C may reduce the risk probably at least up to 70 mg/dL; however, there are no supportive data for this effect still being obtained over 80 mg/dL. Patients with a
homozygous CETP deficiency should be followed-up while controlling other risk factors, not to dismiss the possibility of the risk increase with an extremely elevated HDL-C level. A gender-dependent strategy for HDL-C management should be discussed when further epidemiological and clinical evidence becomes available.

References

