Original Article

Link between Lipoprotein-Associated Phospholipase A2 Gene Expression of Peripheral-Blood Mononuclear Cells and Prognostic Outcome after Acute Ischemic Stroke

Tzu-Hsien Tsai1, Yung-Lung Chen1, Hung-Sheng Lin2, Chu-Feng Liu3, Hsuen-Wen Chang4, Cheng-Hsien Lu2, Wen-Neng Chang2, Shu-Feng Chen2, Chiung-Jen Wu1, Steve Leu5, Sheung-Fat Ko6 and Hon-Kan Yip1

Tzu-Hsien Tsai and Yung-Lung Chen contributed equally to this work.

1Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
2Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
3Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
4Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
5Center for Translational Research in Biomedical Science, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
6Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan

Aim: To evaluate the potential of the lipoprotein-associated phospholipase A2 (Lp-PLA2) level as a biomarker in the prediction of prognostic outcome in patients with acute ischemic stroke (IS).

Methods: From October 2008 to March 2010, 130 patients with acute IS were prospectively enrolled in the study and their medical records were reviewed. A blood sample was collected from each patient 48 hours after acute IS, as well as from 20 healthy volunteers as controls. Messenger-RNA (mRNA) expression of Lp-PLA2 of peripheral-blood mononuclear cells (PBMNCs) relative to that of β actin was measured using quantitative reverse transcription polymerase chain reaction (RT-PCR).

Results: Patients with acute IS exhibited significantly higher Lp-PLA2 mRNA expression of PBMNCs than the control group (p < 0.0001). Lp-PLA2 mRNA expression of PBMNCs in patients with a major adverse clinical outcome (MACO) (defined as recurrent stroke or death) within 90 days was significantly higher than in patients without MACO (p = 0.006). Furthermore, elevated Lp-PLA2 mRNA expression was strongly associated with old age, diabetes mellitus, a positive history of significant coronary arterial disease and significant stenosis of the extra-cranial carotid arteries (all p < 0.04), and positively correlated with the body mass index, leukocyte count, and serum levels of total cholesterol and low-density lipoprotein cholesterol. Multivariate analysis revealed that Lp-PLA2 mRNA expression of PBMNCs was a significant independent predictor of MACO within 90 days (p = 0.011).

Conclusion: Elevated Lp-PLA2 mRNA expression of PBMNCs seems to be a potential biomarker for predicting an unfavorable outcome in patients with acute IS.

Key words: Acute ischemic stroke, Lipoprotein-associated phospholipase A2 activity, Clinical outcome

Introduction

Many studies have reported that inflammation might be involved in endothelial dysfunction and propagation of atherosclerosis, which may eventually lead to acute coronary syndrome and ischemic stroke1-5). Besides the assessment of traditional risk
factors, many inflammatory biomarkers in blood or damaged atherosclerotic plaque are useful for assessing the potential risk of cardiovascular diseases, monitoring disease propagation, and predicting the outcome in various clinical settings1-10. Of these biomarkers,1-10 lipoprotein-associated phospholipase A\textsubscript{2} (Lp-PLA\textsubscript{2}) has recently been described as a novel biomarker which is strongly associated with atherosclerosis-related inflammatory processes and plaque instability in histopathologic studies of the coronary and carotid arteries10-12.

Lp-PLA\textsubscript{2}, also known as platelet-activating factor acetylhydrolase, is produced predominantly by monocyte-derived macrophages, T-lymphocytes and mast cells13-15. Many studies have demonstrated that Lp-PLA\textsubscript{2} is an enzyme with broad capabilities, allowing cleavage of oxidized fatty acids at the sn-2 position of oxidized phospholipids and the generation of lysophosphatidylcholine, free oxidized fatty acids and bioactive proatherogenic lipids10, 16. Several basic and clinical researches have advocated that Lp-PLA\textsubscript{2} may be a biological effector and biomarker associated with the production of low-density lipoprotein cholesterol (LDL-C), metabolic syndrome, atherosclerotic and cardiovascular diseases15-21. Although Lp-PLA\textsubscript{2} activity has been reported as an independent predictor of the long-term prognostic outcome in patients with or without cardiovascular diseases10, 17, 21-23, whether this biomarker can also be applied in patients with acute ischemic stroke (IS) has not been well addressed8, 24. The purpose of this study was to verify the potential of Lp-PLA\textsubscript{2} mRNA expression in peripheral-blood mononuclear cells (PBMCs) as a biomarker in the prediction of prognostic outcome in patients with acute IS.

Materials and Methods

Patient Enrollment and Exclusion Criteria

This study was approved by the Institutional Review Committee on Human Research of the Chang Gung Memorial Hospital (approval number: 96-1381A) and was conducted at Kaohsiung Chang Gung Memorial Hospital.

Acute IS was defined as the sudden onset of loss of global or focal cerebral function persisting for more than 24 hours. The neurologic imaging criteria for the diagnosis of acute IS included new focal or diffuse low attenuation areas in the brain on computed tomography or the presence of a high signal intensity area on diffusion-weighted imaging (DWI) and a low signal intensity area on the apparent diffusion coefficient (ADC) map on magnetic resonance (MR) studies.

The degree of neurological impairment was assessed by neurologists based on the National Institutes of Health Stroke Scale (NIHSS).

Patients of all ages with acute IS were eligible for enrollment in the current study. Inclusion criteria included a total NIHSS score \(\leq 4 \) and a time window of \(\leq 48 \) hours from the onset of symptoms to the time point of the collection of blood samples (48 hours after IS). Exclusion criteria included patients with contraindications for MR imaging, lack of evidence of acute IS on MR studies, the presence of intracranial hemorrhage, major surgery or trauma within the preceding 3 months, concurrent liver function abnormality, hematological disorders, malignancy, febrile disorders, acute or chronic inflammatory diseases, atrial fibrillation, pregnancy, or thrombolytic therapy.

From October 2008 to March 2010, 130 patients presenting with acute IS who fulfilled the inclusion criteria were enrolled for blood sampling to measure Lp-PLA\textsubscript{2} mRNA expression of PBMCs. Twenty age- and gender-matched healthy volunteers were also recruited as the control group. Informed consent was obtained from all the patients and volunteers.

Imaging Studies and Laboratory Investigations

In addition to clinical assessments, other studies, including a chest radiograph, brain computed tomography and/or MR imaging, duplex scanning of the carotid arteries, 12-lead electrocardiography, and echocardiography, were performed. White blood cell (WBC) count and biochemical data were acquired on admission.

Protocol for RNA Extraction

Lysis/binding buffer (400 \(\mu \)L) (High Pure RNA Tissue Kit; Roche, Germany) and an appropriate amount of frozen PBMCs were added to a nuclelease-free 1.5 mL microcentrifuge tube, followed by disruption and homogenization of PBMCs using a rotor-stator homogenizer (Roche). The lysate in the microcentrifuge tube was then centrifuged for two minutes at 13,000g. Only the supernatant was utilized for subsequent steps. Absolute ethanol (200 \(\mu \)L) was then added to the supematant and mixed well. The entire sample in the upper reservoir was pipetted into a High Pure filter tube (Roche) that was placed in a collection tube (Roche). This sample was then centrifuged for 30 seconds at 13,000g in a standard tabletop microcentrifuge. The filter tube was removed from the collection tube and the flowthrough liquid was discarded. For each isolation, 90 \(\mu \)L DNase incubation buffer was pipetted into a sterile 1.5 \(\mu \)L reaction tube, 10 \(\mu \)L of DNase I working solution was then added,
Reverse Transcription qPCR Analysis for Relative mRNA Expression of Lp-PLA₂ of PBMNCs to β Actin

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was conducted using LightCycler TaqMan Master (Roche) in a single capillary tube according to the manufacturer's guidelines for individual component concentrations. The Lp-PLA₂ forward (TGGCTTACCTTAGAACCCTGA) and reverse (TTTTGCTCTTTGCCGTACCT) primers were each designed based on individual exons of the target gene sequence to avoid amplifying genomic DNA.

During PCR, the probe was hybridized to its complementary single-strand DNA sequence within the PCR target. As amplification occurred, the probe was degraded due to the exonuclease activity of Taq DNA polymerase, thereby separating the quencher from the reporter dye during extension. During the entire amplification cycle, light emission increased exponentially. A positive result was determined by identifying the threshold cycle value at which reporter dye emission appeared above the background.
Table 2. Comparison of Baseline Characteristics between Patients with and without 90 Days MACO

<table>
<thead>
<tr>
<th>Variables</th>
<th>With MACO (n=14)</th>
<th>Without MACO (n=116)</th>
<th>p* value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>65.9 ± 11.4</td>
<td>65.4 ± 13.2</td>
<td>0.893</td>
</tr>
<tr>
<td>Male gender</td>
<td>85.7% (12)</td>
<td>65.9% (76)</td>
<td>0.221</td>
</tr>
<tr>
<td>Hypertension</td>
<td>78.6% (11)</td>
<td>69.8% (81)</td>
<td>0.713</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>42.9% (6)</td>
<td>31.9% (37)</td>
<td>0.601</td>
</tr>
<tr>
<td>Current smoking</td>
<td>50% (7)</td>
<td>25.9% (30)</td>
<td>0.115</td>
</tr>
<tr>
<td>Previous stroke by history</td>
<td>57.1% (8)</td>
<td>30.2% (35)</td>
<td>0.084</td>
</tr>
<tr>
<td>Previous stroke by MRI</td>
<td>71.4% (10)</td>
<td>61.7% (71)</td>
<td>0.678</td>
</tr>
<tr>
<td>NIHSS at admission</td>
<td>8.21 ± 6.46</td>
<td>7.86 ± 8.97</td>
<td>0.461</td>
</tr>
<tr>
<td>WBC count (×10^3/mL)</td>
<td>8.9 ± 2.5</td>
<td>8.5 ± 2.9</td>
<td>0.591</td>
</tr>
<tr>
<td>Total cholesterol level</td>
<td>191 ± 45</td>
<td>182 ± 46</td>
<td>0.456</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td>40 ± 10</td>
<td>47 ± 16</td>
<td>0.104</td>
</tr>
<tr>
<td>LDL-C (mg/dL)</td>
<td>112 ± 41</td>
<td>111 ± 35</td>
<td>0.998</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>1.37 ± 0.50</td>
<td>1.01 ± 0.50</td>
<td>0.010</td>
</tr>
<tr>
<td>Lp-PLA2 mRNA†</td>
<td>6.73 (3.28-10.67)</td>
<td>2.99 (1.98-4.48)</td>
<td>0.006</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.6 ± 4.4</td>
<td>24.3 ± 4.1</td>
<td>0.542</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>6.6 ± 1.2</td>
<td>6.8 ± 2.2</td>
<td>0.447</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>145 ± 16</td>
<td>142 ± 25</td>
<td>0.527</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>81 ± 10</td>
<td>82 ± 14</td>
<td>0.830</td>
</tr>
<tr>
<td>Significant ECCA stenosis‡</td>
<td>7.1% (1)</td>
<td>15.5% (18)</td>
<td>0.662</td>
</tr>
<tr>
<td>Statin therapy</td>
<td>35.7% (5)</td>
<td>33.0% (38)</td>
<td>0.841</td>
</tr>
<tr>
<td>ACEI/ARB therapy</td>
<td>50% (7)</td>
<td>40.7% (47)</td>
<td>0.694</td>
</tr>
</tbody>
</table>

Data are expressed as the mean ± SD or % (No.) of patients.
ACEI/ARB=angiotensin converting enzyme inhibitor/angiotensin II type I receptor blocker; Lp-PLA2=lipoprotein-associated phospholipase A2; BMI=body mass index; DBP=diastolic blood pressure; NIHSS=National Institutes of Health stroke scale; ECCA=extra-cranial carotid artery; HbA1c=hemoglobin A1c; HDL-C=high-density lipoprotein cholesterol; LDL-C=low-density lipoprotein cholesterol; WBC=white blood cell.; MACO=major adverse clinical outcome (defined as recurrent stroke or death within 90 days).

* by Chi-square test or Fisher’s exact test for categorical data; by t-test or Mann-Whitney U test for continuous data.

† Indicated mRNA expression of Lp-PLA2 of peripheral-blood mononuclear cells which was presented as the median (Interquartile range) level.

‡ defined as ECCA stenosis ≥ 50% regardless of anatomical locations by carotid Doppler examination.

Medications
Aspirin was the first choice for our patients with acute IS except for patients who could not tolerate such treatment due to aspirin-related peptic ulcer or upper gastrointestinal tract bleeding. For these patients, Clopidogrel was administered. Other commonly used drugs included statins, angiotensin converting enzyme inhibitors, calcium channel blocking agents, and beta blockers.

Definitions of Major Adverse Clinical Outcome and Extra-Cranial Carotid Artery Stenosis
The major adverse clinical outcome (MACO) was defined as the occurrence of recurrent IS or death within 90 days during follow-up. Significant stenosis of the extra-cranial carotid artery (ECCA) was defined as stenosis ≥ 50%, regardless of anatomical location, as revealed on carotid Doppler examination.

Statistical Analysis
Continuous variables with normal distribution were expressed as the mean ± SD and those without normal distribution were presented as median values (interquartile interval). Categorical data were analyzed by the Chi-square test or Fisher’s exact test for categorical data and continuous variables were analyzed using the unpaired t-test or the Mann-Whitney U test where appropriate. The predictive values of categorically variables for elevated Lp-PLA2 mRNA expression of PBMCs were assessed with the logistic regression test. Spearman’s rank test was used to assess the correlations between quantitative variables without normal distribution. Multiple stepwise regression analysis was utilized to assess the independent predictors of
MACO within 90 days. Statistical analysis was performed using SPSS statistical software for Windows version 13 (SPSS for Windows, version 13; SPSS Inc., IL, USA). *P* < 0.05 was considered significant.

Results

Baseline Characteristics of Acute Ischemic Stroke Patients and Healthy Controls (Table 1)

Patients with acute IS and healthy controls showed no significant differences with respect to age, gender, systolic and diastolic blood pressure, serum levels of total cholesterol and LDL-C; however, the WBC count, serum level of creatinine and Lp-PLA2 mRNA expression were significantly higher, whilst the serum level of high-density lipoprotein cholesterol (HDL-C) was significantly lower in patients with acute IS than in healthy controls. The percentages of patients with recurrent stroke and death within 90 days were 7.7% and 3.1%, respectively, and the percentage of MACO was 10.8%.

Comparison of Baseline Characteristics between Patients with and without MACO (Table 2)

Baseline characteristics and Lp-PLA2 mRNA expression of PBMNCs in patients with MACO (*n* = 14) and without MACO (*n* = 116) were compared. There were no significant differences in terms of age, gender, systolic and diastolic blood pressure, the presence of coronary artery disease (CAD) risk factors, positive previous stroke history, positive findings of previous stroke on MR imaging, and NIHSS score on admission between patients with and without MACO. Furthermore, there were no significant differences between the two groups with respect to the serum levels of total cholesterol, LDL-C, HDL-C, hemoglobin A1c, WBC count, body-mass-index (BMI), the frequencies of associated significant stenosis of ECCA and prior usage of statins, angiotensin converting enzyme inhibitors and angiotensin II type 1 inhibitors. In contrast, the serum level of creatinine and Lp-PLA2 mRNA expression of PBMNCs were significantly higher in patients with than without MACO.

Predictors of Elevated Lp-PLA2 mRNA Expression of PBMNCs (Table 3)

The logistic regression test revealed that older age (≥ 65 years old), diabetes mellitus (DM), a positive past history of significant coronary artery obstruction treated by percutaneous coronary intervention (PCI) and the presence of significant ECCA stenosis were strongly associated with elevated Lp-PLA2 mRNA expression of PBMNCs.

Table 3. Predictors of Increased Lp-PLA2 mRNA Expression in Peripheral Blood Mononuclear Cells

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number</th>
<th>Lp-PLA2</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 65 yrs</td>
<td>67</td>
<td>3.17</td>
<td>0.031</td>
</tr>
<tr>
<td>< 65 yrs</td>
<td>63</td>
<td>2.67</td>
<td>0.101</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>88</td>
<td>3.02</td>
<td>0.575</td>
</tr>
<tr>
<td>female</td>
<td>42</td>
<td>3.27</td>
<td>0.106</td>
</tr>
<tr>
<td>Risk factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM (positive)</td>
<td>43</td>
<td>3.93</td>
<td>0.008</td>
</tr>
<tr>
<td>DM (negative)</td>
<td>87</td>
<td>2.78</td>
<td>0.014</td>
</tr>
<tr>
<td>HTN (positive)</td>
<td>92</td>
<td>3.14</td>
<td>0.216</td>
</tr>
<tr>
<td>HTN (negative)</td>
<td>38</td>
<td>2.83</td>
<td>0.009</td>
</tr>
<tr>
<td>CAD (positive)</td>
<td>11</td>
<td>6.15</td>
<td>0.005</td>
</tr>
<tr>
<td>CAD (negative)</td>
<td>119</td>
<td>2.99</td>
<td>0.031</td>
</tr>
<tr>
<td>Af (positive)</td>
<td>12</td>
<td>2.31</td>
<td>0.747</td>
</tr>
<tr>
<td>Af (negative)</td>
<td>118</td>
<td>3.01</td>
<td>0.041</td>
</tr>
<tr>
<td>ECCA stenosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 50%</td>
<td>19</td>
<td>5.19</td>
<td>0.014</td>
</tr>
<tr>
<td>< 50%</td>
<td>111</td>
<td>3.01</td>
<td>0.031</td>
</tr>
<tr>
<td>Stroke severity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIHSS ≥ 8</td>
<td>57</td>
<td>3.09</td>
<td>0.593</td>
</tr>
<tr>
<td>NIHSS < 8</td>
<td>73</td>
<td>3.02</td>
<td>0.441</td>
</tr>
</tbody>
</table>

Lp-PLA2 = lipoprotein-associated phospholipase A2; DM = diabetes mellitus; HTN = hypertension; CAD = coronary artery disease (defined as epicardial coronary artery stenosis ≥ 50% by coronary angiographic examination); Af = atrial fibrillation; ECCA = extra-cranial carotid artery; NIHSS = National Institutes of Health Stroke Scale.

* by Mann-Whitney *U* test for continuous data presented as the median (interquartile range).

† indicated patients with a past history of significant coronary artery disease treated by percutaneous coronary intervention (PCI).

Correlation between Continuous Variables and Elevated Lp-PLA2 mRNA Expression of PBMNCs (Fig. 1)

Spearman’s rank correlation test revealed that BMI, WBC count, the serum levels of total cholesterol and LDL-C had significant positive correlations with elevated Lp-PLA2 mRNA expression of PBMNCs (all *p* < 0.05).

Univariate and Multivariate Analyses for Predictors of MACO within 90 Days (Tables 4 and 5)

Univariate analysis showed that only an elevated serum level of creatinine and Lp-PLA2 mRNA expression of PBMNCs were significantly predictive of MACO within 90 days and multiple stepwise logistic regression analysis further confirmed that these two parameters were independent and significant predictors of the occurrence of MACO within 90 days.
factor which may promote the generation of oxidized LDL-C and free fatty acid with subsequent direct participation in the formation and rupture of carotid plaques10, 12, 15, 18, 19. Our results also revealed a strong association between significant coronary artery or ECCA stenosis and elevated Lp-PLA2 mRNA expression of PBMNCs. Moreover, significant positive correlations between enhanced Lp-PLA2 mRNA expression and serum levels of total cholesterol and LDL-C, WBC count and BMI were also identified. The levels of total cholesterol and LDL-C have been documented as two important risk factors of atherosclerotic cardiovascular diseases30, 31. On the hand, a high WBC count and BMI are also suggestive of the presence of inflammatory changes and higher chances of an association with metabolic syndrome, respectively. Concurring with previous studies28-31, our results further verify that elevated Lp-PLA2 activity may be a useful biomarker of proatherogenic and inflammatory changes10 that may associate with endothelial dys-

Discussion

The link between elevated Lp-PLA2 activity and the risks of cardiovascular or cerebrovascular events has been investigated in several studies25-27. The present study with at least 90 days follow-up of 130 consecutive patients presented with acute IS showed that Lp-PLA2 mRNA expression of PBMNCs was significantly higher in patients with acute IS than in healthy controls.

Of note, we found that old age and the presence of DM were strongly predictive of elevated Lp-PLA2 mRNA expression of PBMNCs. Both old age and DM are well known traditional risk factors for the development of endothelial dysfunction and atherosclerosis28, 29. Therefore, we postulate that elevated Lp-PLA2 activity may also play a role in the formation and propagation of atherosclerotic plaques that may lead to occlusive arterial changes.

Lp-PLA2 has been reported as a proatherogenic factor which may promote the generation of oxidized LDL-C and free fatty acid with subsequent direct participation in the formation and rupture of carotid plaques10, 12, 15, 18, 19. Our results also revealed a strong association between significant coronary artery or ECCA stenosis and elevated Lp-PLA2 mRNA expression of PBMNCs. Moreover, significant positive correlations between enhanced Lp-PLA2 mRNA expression and serum levels of total cholesterol and LDL-C, WBC count and BMI were also identified. The levels of total cholesterol and LDL-C have been documented as two important risk factors of atherosclerotic cardiovascular diseases30, 31. On the hand, a high WBC count and BMI are also suggestive of the presence of inflammatory changes and higher chances of an association with metabolic syndrome, respectively. Concurring with previous studies28-31, our results further verify that elevated Lp-PLA2 activity may be a useful biomarker of proatherogenic and inflammatory changes10 that may associate with endothelial dys-

Fig. 1. Spearman’s rank test for assessing the correlation between Log lipoprotein-associated phospholipase A2 (Lp-PLA2) mRNA expression and body mass index ($p=0.003$, $r=0.245$), white blood cell (WBC) count ($p=0.001$, $r=0.301$) and the levels of total cholesterol (TC) ($p=0.02$, $r=0.236$) and low-density lipoprotein cholesterol (LDL-C) level ($p=0.008$, $r=0.314$).
function and the development of atherosclerosis.

Although Elkind et al. have reported that stroke patients with high Lp-PLA2 activity were predisposed to recurrence after the first IS\(^8,24\), comprehensive data in this clinical setting remain limited. In the present study, multiple stepwise logistic regression analysis confirmed that elevated Lp-PLA2 mRNA expression of PBMCs is a significant independent predictor of MACO within 90 days. Furthermore, our results also disclosed that an elevated serum level of creatinine is another significant independent predictor of MACO in acute IS patients. Previous studies have described that renal insufficiency is an important risk factor for predicting an untoward clinical outcome in patients with acute coronary syndrome undergoing PCI\(^32-34\). However, the relationship between the serum level of creatinine and clinical outcome of stroke patients has not been addressed. To our knowledge, this is the first report of applying an elevated serum level of creatinine as a novel independent predictor of MACO within 90 days in patients with acute IS.

In conclusion, Lp-PLA2 mRNA expression of PBMCs was markedly elevated in patients with acute IS. It is noteworthy that enhanced mRNA expression of this enzyme in PBMCs could be considered a useful biomarker for predicting an unfavorable outcome and as an independent predictor of MACO within 90 days in patients with acute IS. Therefore, this novel inflammatory biomarker may be helpful for the stratification of acute IS patients into high-risk and lower-risk subgroups in clinical practice.

Study Limitations

The present study utilized RT-PCR rather than ELISA to measure the level of Lp-PLA2 and could only reflect the mRNA expression level of this enzyme in leukocytes; therefore, the details of the activity or the level of related protein in the circulation were not investigated.

References

4) Yip HK, Wu CJ, Chang HW, Yang CH, Yeh KH, Chua S, Fu M: Levels and values of serum high-sensitivity C-reactive protein within 6 hours after the onset of acute myocardial infarction. Chest, 2004; 126: 1417-1422
disease. Application to clinical and public health practice.
32) Sadeghi HM, Stone GW, Grines CL, Mehran R, Dixon...
Impact of Lp-PLA2 in Acute Ischemic Stroke

