1. Hypertension

Hypertension is an important risk factor for atherosclerotic cardiovascular diseases (CVDs), such as cerebrovascular disease, coronary artery disease (CAD), heart failure and chronic kidney disease (CKD). Among them, it especially exhibits a strong association with cerebrovascular disease. Hypertension is a stronger risk factor for cerebral hemorrhage than for cerebral infarction and the incidences of both cerebral hemorrhage and infarction increase in association with an increase in blood pressure category. The Hisayama study demonstrated that the incidence of cerebral infarction significantly increased in patients with grade 1 hypertension (140 to 159/90 to 99 mmHg) compared with that observed in patients with an optimal blood pressure (<120/80 mmHg). According to the "Health Japan 21" report, an increase in systolic blood pressure of 10 mmHg is associated with an increased risk of morbidity and mortality from cerebrovascular disease of 20% in men and approximately 15% in women.

Hypertension is also involved in the development of CAD, although the relationship is weaker than that observed with cerebrovascular disease. It has been reported that an increase in systolic blood pressure of 10 mmHg is associated with a greater risk of morbidity and mortality from CAD of approximately 15% in men. Furthermore, in the 19-year follow-up period in the NIPPON DATA80 study, the hazard ratio for CVD mortality significantly increased in association with a rise in blood pressure in subjects 30 to 64 and 65 to 74 years of age, as well as in the elderly ≥75 years of age. In the J-LIT study, the relative risk of developing CAD in primary prevention patients with hypertension was 2.5-fold for women and 2.3-fold for men compared with that observed in patients without hypertension.

Although blood pressure is usually measured in the office (in a medical environment), it has been reported that home blood pressure and 24-hour ambulatory blood pressure monitoring (ABPM) are more accurate in predicting the development of cardiovascular events than office blood pressure measurements.

The reference values for hypertension differ for office blood pressure, 24-hour ABPM and home blood pressure. Hypertension is defined as an office blood pressure of ≥140/90 mmHg, a home blood pressure of ≥135/85 mmHg and a 24-hour ABPM of ≥130/80 mmHg.

2. Diabetes Mellitus (DM)

DM is an important risk factor for CVD. In the Hisayama study, the relative risks of developing CAD and cerebral infarction in patients with DM were higher, with values of 2.6 and 3.2, respectively, than those observed in subjects with normal glucose tolerance. The relative risks are the same as those seen in Western patients with DM, while the absolute risks are lower than those observed in Westerners by approximately 30% to 70%. The increased risk of developing CAD due to DM is higher in women than in men. Patients with DM also have an increased risk of developing peripheral arterial disease (PAD). The risk of developing CVD increases from the onset of impaired glucose tolerance (IGT) before the development of DM; however, it is unclear...
whether patients with IGT are at the same risk level as those with DM.

4. Age and Sex

Age is a strong risk factor for CVD in Japan as well as Western countries.51, 52 Regarding CAD, the U.S. data53, NIPPON DATA80, "Annual Statistical Report of National Health Conditions"55, Hiroshima/Nagasaki32, 3M study in workplaces56 and Takashima study in Shiga prefecture57 studies demonstrated that the mortality and incidence of CAD increase starting from age 45 for men and age 55 for women and that the risk of CVD markedly increases in association with increases in age class.

The incidence and mortality of CAD in women are lower than those observed in men in all age classes. Considering the increased risk associated with age, the increase in the risk of CAD in women occurs more slowly, by approximately 10 years, than that observed in men27, 55). In epidemiological studies conducted in Okinawa and Shiga prefectures, the age-adjusted incidence of myocardial infarction in women 35 to 65 years of age was found to be markedly lower than that observed in men2, 57). The vital statistics prepared by the Ministry of Health, Labour and Welfare reported that the mortality of myocardial infarction in women is 22% to 25% among women in their 50s, 25% to 33% among women in their 60s and 41% to 48% among women in their 70s compared to that observed in men55). In women, the postmenopausal period is considered to reflect the point at which the risk of CAD increases. Patients who have undergone bilateral oophorectomy should be considered to be at risk of developing CAD, even if they are <55 years of age.

5. Family History

In Western countries, it has been reported since the 1970s that a family history of CAD is a risk factor for the disease.59-66 A family history of CAD, especially that in a first-degree relative (parent, child, brother or sister), and a family history of premature CAD (age of onset: <55 years for men, <65 years for women) are strong risk factors for CAD.

The Framingham study reported that if at least one parent has CAD, the age-adjusted odds ratio for developing CAD was 2.6 and 2.3 for men and women, respectively, and 2.0 and 1.7 for men and women following adjustment for all variables in a multivariate analysis.62 In Japan, the J-LIT study showed that a family history of CAD increases the relative risk of developing CAD by approximately threefold.63 The recent CREDO-Kyoto study also reported that a family history of CAD contributes to the development of major cardiovascular events at an early
Risk Factors Other than Dyslipidemia

conditions under which the amount of remnant lipoproteins is increased include familial combined hyperlipidemia, familial type III hyperlipidemia, DM and metabolic syndrome.

3) Small Dense LDL
Small dense LDL particles\(^ {85, 86} \) are subfractions of LDL particles that are small in size and high in density. Many reports have shown that increased levels of small dense LDL are related to CAD\(^ {87-91} \) and associated with PAD and aneurysm formation\(^ {92, 93} \). The proposed mechanisms underlying the strong atherogenicity of small dense LDL include the following: small dense LDL particles are easily oxidized\(^ {94} \) and processed by pathways other than those for LDL receptors\(^ {95} \); and the particles are easily incorporated into the arterial wall\(^ {96} \) where they tend to bind to the matrix\(^ {97} \). The presence of small dense LDL is closely associated with hypertriglyceridemia and hypo-HDL cholesterol\(^ {98} \). An increase in the level of small dense LDL is found in conditions such as type 2 DM, metabolic syndrome and insulin resistance\(^ {99} \).

4) Oxidized LDL and MDA-LDL
Oxidized LDL, in which lipids (e.g., phospholipids) and apolipoproteins are oxidatively modified, is involved in a broad range of processes related to atherosclerosis, such as vascular endothelial cell injury, enhancement of infiltration of monocytes into the vessel walls and foam cell formation. Assays to measure the level of MDA-LDL, a class of oxidized LDL in which apoB-100 is modified by malondialdehyde (MDA), are commercially available.

5) Apo B
Apo B is an apolipoprotein contained in atherogenic lipoprotein particles, such as LDL and remnant lipoproteins. Because there is one apo B molecule per lipoprotein particle, the apo B level is proportionate to the number of atherogenic lipoprotein particles. Therefore, even if the LDL-C level remains constant, an increase in the number of LDL particles caused, for instance, by the existence of small dense LDL particles will result in a higher level of apo B. A meta-analysis of epidemiological studies revealed that the apo B level is a stronger marker of cardiovascular events than the levels of LDL-C and HDL-C\(^ {100} \).

6) Ratios of Lipids and Apoproteins
The lipid levels, such as those of LDL-C and HDL-C, are strong risk factors for the development of CVD; however, several studies have proposed that the proportion of cholesterol in each lipoprotein or the
ratio of apolipoproteins, i.e., the TC/HDL-C ratio, the non HDL-C/HDL-C ratio, the LDL-C/HDL-C ratio and the apo B/AI ratio, may be stronger markers of CVD than the lipid or apolipoprotein levels themselves\cite{101-104}. It should be noted that most of these data are derived from Western countries; thus, in Japan, the current management goals should be evaluated using the absolute value of each lipid level.

7) CRP and Inflammation-Related Markers

Inflammation plays an important role in the formation of atherosclerotic lesions\cite{105, 106}. C-reactive protein (CRP) is an acute-phase protein that is usually used as an inflammatory marker. It has recently been reported that the high-sensitivity CRP (hsCRP) level observed under a steady state can be used as a marker for the primary/secondary prevention of CAD\cite{107-112}. It has also been reported that the CRP level is an independent risk factor for CAD, cerebral infarction and vascular death and is a stronger marker than systolic blood pressure or the non HDL-C level\cite{113}. However, an analysis of CRP genotypes in patients with CAD revealed that the genotypes that result in high levels of CRP are not associated with the development of CVD; thus, CVD is considered to be associated with the inflammatory state reflected by the CRP level\cite{114}.

Similar to CRP, Lp-PLA2, an enzyme produced in atherosclerotic lesions, and amyloid A, an acute-phase protein, have been reported to be markers of CVD\cite{110, 115, 116}. Infections with organisms such as Chlamydia pneumoniae and cytomegalovirus have been proposed to be related to the development of atherosclerosis via the effects of local and/or systemic inflammation\cite{117}. A recent study also indicated that periodontal disease is associated with atherosclerosis\cite{118}.

8) Homocysteine

Many reports have indicated that increased plasma levels of homocysteine are a risk factor not only for CAD, but also for strokes and PAD\cite{119-121}. For example, the Physicians’ Health Study showed that increased homocysteine levels are associated with an increased relative risk of myocardial infarction\cite{122}. In addition, a recent analysis suggested that homocysteine is a stronger predictor of cardiovascular events than CRP\cite{123}. On the other hand, the administration of vitamin supplementation therapy to lower the plasma homocysteine levels fails to reduce the incidence of cardiovascular events\cite{124}. Furthermore, a recent study clarified that there is no relationship between CVD and gene mutations that genetically increase the plasma homocysteine levels\cite{125}. Therefore, further investigations are warranted to determine whether the plasma levels of homocysteine are simply a marker or a true causal risk factor for CVD.

9) Blood Coagulation and Fibrinolytic Factors

Plaque rupture and subsequent thrombus formation are important events in the pathogenesis of CAD\cite{126}. Fibrinogen, a coagulation factor, has been shown to be a risk marker for CVD since the 1970s\cite{127}. The fibrinogen level is correlated with other risk factors, such as age, the smoking status, the LDL-C level and the physical activity level\cite{128}; however, even when corrected for these factors, the fibrinogen level has been shown to be a marker of CVD\cite{129-132}. It has also been proposed that fibrinolytic factors, such as t-PA\cite{129} and PAI-1\cite{78}, are involved in the pathogenesis of CVD. The PAI-1 level is associated with the severity of several conditions, including visceral fat accumulation and insulin resistance\cite{133, 134}; thus, it has been speculated that the presence of these conditions affects the association observed between the PAI-1 level and the development of CAD. The activities of coagulation and fibrinolytic factors are thought to be linked with each other, thereby contributing to the formation of atherosclerotic lesions\cite{135}.

Footnotes

This is an English version of the guideline from the Japan Atherosclerosis Society (chapter 5) published in Japanese in June, 2012.

Acknowledgements

We are grateful to the following societies for their collaboration and valuable contributions: Dr. Hidenori Arai (The Japan Geriatrics Society), Dr. Kiminori Hosoda (Japan Society for the Study of Obesity), Dr. Hiroyasu Iso (Japan Epidemiological Association), Dr. Atsunori Kashiwagi (Japan Diabetes Society), Dr. Masayasu Matsumoto (The Japan Stroke Society), Dr. Hiroki Nakajima (The Japanese Society of Hypertension), Tetsuo Shoji (Japanese Society of Nephrology) and Hiroaki Tanaka (Japanese Society of Physical Fitness and Sports Medicine). We also thank Dr. Shinji Koba, Dr. Manabu Minami, Dr. Tetsuro Miyazaki, Dr. Hirotoshi Ohmura, Dr. Mariko Harada-Shiba, Dr. Hideaki Shima, Dr. Daisuke Sugiyama, Dr. Minoru Takemoto and Dr. Kazuhiro Tsukamoto for supporting this work.

References

1) Ueshima H: Explanation for the Japanese paradox: pre-
Risk Factors Other than Dyslipidemia


Table 1. Risk Factors or Markers to Consider

<table>
<thead>
<tr>
<th>Lipid-related factors/markers</th>
<th>Non-lipid factors/markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lp(a)</td>
<td>• C-reactive protein (CRP)</td>
</tr>
<tr>
<td>• Remnant lipoproteins</td>
<td>• Inflammation-related markers</td>
</tr>
<tr>
<td>• Small dense LDL</td>
<td>• Homocysteine</td>
</tr>
<tr>
<td>• Oxidized LDL and MDA-LDL</td>
<td>• Coagulation/fibrinolytic factors</td>
</tr>
<tr>
<td>• Apo B</td>
<td></td>
</tr>
<tr>
<td>• Ratio of lipids or apoproteins</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Relative Risks (with 95% CI) of Death from Cerebrovascular Diseases Associated with Smoking, Follow-up of 51,774 man-years, the NIPPON DATA80.

The data were adjusted for age, systolic blood pressure, BMI, the TC level, alcohol intake and DM.

CI: Confidence interval

*: p < 0.05 compared with nonsmoker group

Schematic diagram obtained from Ueshima H et al. Stroke. 35: 1836-1841, 2004

Fig. 2. Relative Risk (with 95% CI) of CAD-related Death Associated with Smoking, Follow-up of 51,774 man-years, the NIPPON DATA80.

The data were adjusted for age, systolic blood pressure, BMI, the TC level, alcohol intake and DM.

CI: Confidence interval

*: p < 0.05 compared with nonsmoker group

Schematic diagram obtained from Ueshima H et al. Stroke. 35: 1836-1841, 2004

6) Health Japan 21 Plan Study Committee and Health Japan 21 Plan Development Committee: People’s health promotion campaign for the 21st century (Health Japan 21): Report on Health Japan 21 Plan Study Committee and Health Japan 21 Plan Development Committee. Japan Health Promotion and Fitness Foundation, 2000


31) Kiyohara Y, Ueda K, Fujishima M: Smoking and cardio-


41) Barnoya J, Glantz SA: Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation, 2005; 111: 2684-2698

42) Bonita R, Duncan J, Truelsen T, Jackson RT, Beaghehole R: Passive smoking as well as active smoking increases the risk of acute stroke. Tob Control, 1999; 8: 156-160


53) Walsh JM, Grady D: Treatment of hyperlipidemia in women. JAMA, 1995; 274: 1152-1158


59) Silberberg JS, Wlodarczyk J, Fryer J, Robertson R, Hens-
740
Teramoto et al.


71) Maher VM, Brown BG: Lipoprotein(a) and coronary heart disease. Curr Opin Lipidol, 1995; 6: 229-235

72) Bostom AG, Cupples LA, Jenner JL, Ordovas JM, Ross R: Lipoprotein(a) levels and risk of coronary heart disease in men aged 55 years and younger: a prospective study. JAMA, 1996; 276: 544-548


82) Nielsen LB: Atherogenicity of lipoprotein(a) and oxidized low density lipoprotein: insight from in vivo studies of arterial wall influx, degradation and efflux. Atherosclerosis, 1999; 143: 229-243


85) Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM: Lowdensity lipoprotein sub-
class patterns and risk of myocardial infarction. JAMA, 1988; 260: 1917-1921


90) Austin MA: Low-density lipoprotein particle size, triglycerides, and high-density lipoprotein cholesterol as risk factors for coronary heart disease in older Japanese-American men. Am J Cardiol, 2000; 86: 412-416


111) Ridker PM: Clinical application of C-reactive protein