Usefulness of the Neutrophil-to-Lymphocyte Ratio in Predicting the Severity of Coronary Artery Disease: A Gensini Score Assessment

Juan Chen¹,², Man-Hua Chen², Sha Li¹, Yuan-Lin Guo¹, Cheng-Gang Zhu¹, Rui-Xia Xu¹, Yan Zhang¹, Jing Sun¹, Ping Qing¹, Geng Liu¹ and Jian-Jun Li¹

¹Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
²Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China

Aim: The usefulness of the white blood cell (WBC) count and neutrophil-to-lymphocyte ratio (NLR) in predicting the severity of stable coronary artery disease (CAD) has not been sufficiently evaluated, particularly based on strict coronary assessments. The aim of the present study was to investigate the WBC count and NLR in predicting the severity of angiographically proven CAD.

Methods: A total of 2,976 CAD patients and 571 non-CAD patients were consecutively enrolled, and the CAD patients were classified into the three groups according to the tertile of the Gensini score (GS, low GS<18, n=989; intermediate GS 18-41, n=995 and high GS>41, n=992). The efficacy of the WBC count and NLR in predicting the risk and severity of CAD as well as the correlations between these markers and the GS were analyzed. A receiver operating characteristic (ROC) curve analysis was also performed.

Results: The NLR was found to be an independent predictor of both the presence of CAD (OR=1.18, 95%CI: 1.09-1.27, p=0.009) and a high GS (OR=1.10, 95%CI: 1.01-1.16, p=0.032). In addition, there were mild positive correlations between the GS and the NLR, WBC and proportions of neutrophils and monocytes. In the ROC curves analysis, the NLR was found to have the largest area under the curve (AUC=0.63, 95%CI: 0.59-0.67, p=0.000), with an optimal cut-off value of 2.04 (sensitivity: 62.1%, specificity: 54.8%) for predicting a high GS.

Conclusions: The NLR is a valuable independent predictor of the severity of CAD assessed according to the GS. In particular, an NLR of >2.04 indicates a higher risk of CAD and greater severity of CAD lesions.

Key words: Neutrophil-to-lymphocyte ratio, White blood cell count, Coronary artery disease, Gensini score
ment of CAD, but can also be used to predict the clinical outcomes of patients with CAD. Interestingly, the ratio of the absolute number of neutrophils to that of lymphocytes (neutrophil-to-lymphocyte ratio: NLR), a particular WBC parameter, has newly emerged as an inflammatory marker for identifying individuals at risk of CAD. However, only recently have studies of the relationship between the NLR and the severity of CAD begun to be conducted.

In addition, previous studies on the relationships between stable CAD and the NLR, WBC count and levels of WBC subtypes are insufficient and limited by a small sample size. Furthermore, the severity of CAD was assessed according to the number of diseased vessels in these studies, and receiver operating characteristic (ROC) curves analyses of the NLR and WBC count for predicting CAD severity are few. Moreover, no data are currently available regarding these associations in large Chinese populations. Therefore, our study investigated the value of the NLR, WBC count and levels of WBC subtypes in predicting the risk and severity of CAD in a large Chinese cohort from a single center.

Methods

Study Population

The study protocol complied with the Declaration of Helsinki and was approved by the hospital ethics review board (Fu Wai Hospital & National Center for Cardiovascular Diseases, Beijing, China). Written informed consent was obtained from all participants.

A total of 3,974 consecutive patients undergoing coronary angiography at the Division of Dyslipidemia at Fu Wai Hospital between April 2011 and December 2013 were included in the analysis. Among these patients, 312 had undergone percutaneous coronary intervention (Pre-PCI), 15 had undergone coronary artery bypass grafting (pre-CABG), 44 had a history of myocardial infarction (MI) without treatment with revascularization, 42 had an abnormal baseline cardiac troponin I (cTnI) level, three had clinical evidence of cancer and 11 had chronic inflammatory or active infectious diseases; all of these individuals were excluded. Finally, a total of 3,547 subjects were enrolled in this study, including 2,976 patients with angiographically proven CAD (CAD group) and 571 patients with normal coronary angiography findings (Control group). The subjects’ demographic data (age, gender and BMI) and risk factors for CAD, such as smoking habits, diabetes mellitus (DM), hypertension, dyslipidemia and a family history of CAD, were also collected.

Hypertension was diagnosed based on repeated blood pressure measurements of ≥140/90 mmHg (at least two times in different environments) or the use of antihypertensive drugs. DM was diagnosed based on a fasting serum glucose level of ≥6.99 mmol/L on multiple occasions and/or the use of insulin or oral hypoglycemic agents. Dyslipidemia was diagnosed according to a fasting total cholesterol level of (TC) ≥200 mg/dL or triglyceride (TG) level of ≥150 mg/dL.

Laboratory Tests

All baseline laboratory data were acquired from venous blood samples obtained after a 12-hour overnight fast prior to coronary angiography. The levels of WBC, neutrophils, lymphocytes and monocytes were determined using an automated blood cell counter, the Coulter LH780 Hematology Analyzer (Beckman Coulter Ireland Inc. Mervue, Galway, Ireland), and the levels of high-sensitivity C-reactive protein (hs-CRP) were assessed using immunoturbidimetry (Beckmann Assay 360, Bera, California, USA), as previously reported. The NLR was calculated as the ratio of neutrophils to lymphocytes, the levels of which were obtained from the same blood samples. The normal range of hs-CRP in our hospital laboratory is 0-3 mg/L.

Angiographic Examinations

Selective coronary angiography was performed in all enrolled subjects using the standard Judkin’s technique, and the results were analyzed by at least two interventional physicians who performed a quantitative coronary angiography (QCA) analysis. CAD was defined as the presence of obstructive stenosis of more than 50% of the vessel lumen diameter in any of the main coronary arteries, including the left main coronary artery (LM), left anterior descending artery (LAD), left circumflex coronary artery (LCX) and right coronary artery (RCA), or main branches of the vascular system.

The severity of CAD was assessed based on the Gensini score (GS), which was determined according to the severity of stenosis as follows: 1 point for <25% stenosis, 2 points for 26% to 50% stenosis, 4 points for 51% to 75% stenosis, 8 points for 76% to 90% stenosis and 32 points for total occlusion. The score was then multiplied by a factor representing the importance of the lesion’s position in the coronary artery system. For example, 5 for the left main coronary artery, 2.5 for the proximal left anterior descending or proximal left circumflex artery, 1.5 for the mid-region, and 1 for the distal left anterior descending or mid-distal region of the left circumflex artery.
Table 1. Baseline characteristics of the study population

<table>
<thead>
<tr>
<th>Variables</th>
<th>CAD group (n=2976)</th>
<th>Control group (n=571)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, (years)</td>
<td>58.35 ± 9.90</td>
<td>54.90 ± 1.22</td>
<td>0.000</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>2170 (72.9)</td>
<td>234 (56.7)</td>
<td>0.000</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>1621 (54.5)</td>
<td>174 (42.1)</td>
<td>0.000</td>
</tr>
<tr>
<td>Family history of CAD, n (%)</td>
<td>489 (16.4)</td>
<td>51 (12.3)</td>
<td>0.040</td>
</tr>
<tr>
<td>BMI, (kg/m²)</td>
<td>25.78 ± 3.18</td>
<td>25.27 ± 3.40</td>
<td>0.003</td>
</tr>
<tr>
<td>DM, n (%)</td>
<td>819 (27.5)</td>
<td>65 (15.7)</td>
<td>0.000</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>1869 (62.8)</td>
<td>207 (50.1)</td>
<td>0.000</td>
</tr>
<tr>
<td>Dyslipidemia, n (%)</td>
<td>2261 (76.0)</td>
<td>251 (60.8)</td>
<td>0.000</td>
</tr>
<tr>
<td>Laboratory data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC, (10^9/L)</td>
<td>6.33 ± 1.65</td>
<td>6.20 ± 1.68</td>
<td>0.095</td>
</tr>
<tr>
<td>Neutrophil, (10^9/L)</td>
<td>3.82 ± 1.28</td>
<td>3.64 ± 1.30</td>
<td>0.002</td>
</tr>
<tr>
<td>Lymphocyte, (10^9/L)</td>
<td>1.87 ± 0.60</td>
<td>1.94 ± 0.62</td>
<td>0.019</td>
</tr>
<tr>
<td>Monocyte, (10^9/L)</td>
<td>0.44 ± 0.16</td>
<td>0.44 ± 0.16</td>
<td>0.982</td>
</tr>
<tr>
<td>NLR</td>
<td>1.99 (1.55-2.59)</td>
<td>1.83 (1.39-2.44)</td>
<td>0.001</td>
</tr>
<tr>
<td>hs-CRP, (mg/L)</td>
<td>1.54 (0.81-3.34)</td>
<td>1.52 (0.78-3.01)</td>
<td>0.046</td>
</tr>
</tbody>
</table>

CAD: coronary artery disease; BMI: body mass index; DM: diabetes mellitus; WBC: white blood cell; NLR: neutrophil-to-lymphocyte ratio; hs-CRP: high-sensitivity C-reactive protein. The NLR and hs-CRP are presented as the median with 25th and 75th percentiles.

The enrolled patients were classified into the three groups based on the tertile of the GS (low GS <18 points, n=989; intermediate GS 18-41 points, n=995; high GS >41 points, n=992).

Statistical Analysis

All analyses were performed using the SPSS version 19.0 software package (Chicago, Illinois, USA). The Kolmogorov-Smirnov test was used to determine the distribution pattern. Continuous variables are presented as the mean ± SD or median with the 25th and 75th percentiles, as appropriate, and were compared using the t-test [with the results presented as the mean and standard deviation (SD)] or Mann Whitney test [median with the interquartile range (IQR)]. Categorical variables are summarized as frequencies with percentages and were compared using the chi-square test. Variables with a p-value of <0.05 in the univariate logistic regression analyses were included in the multivariate logistic regression analysis. The predictive value of the differential counts of WBCs and their subtypes for a high GS was evaluated according to binary logistic regression models using the forward stepwise selection process. The correlations between variables were examined using Spearman and Pearson correlation coefficients, when appropriate. Receiver operating characteristics (ROC) curves were constructed, and the most discriminating cut-off values were determined to assess the predictive value of the NLR, WBC count and levels of WBC subtypes for a high GS. A p-value of less than 0.05 was considered to be statistically significant.

Results

Baseline Characteristics

The baseline clinical characteristics and laboratory data of the CAD and control groups are summarized in Table 1. As shown in Table 1, age and BMI were significantly higher in the CAD group than in the control group. In addition, the percentage of men, smokers and a history of CAD, DM, hypertension or dyslipidemia were significantly higher in the CAD group than in the control group. Moreover, the NLR, hs-CRP level and neutrophil and lymphocyte counts were significantly different between the patients with CAD and those in the control group (%p=0.002, 0.001, 0.046 and 0.019, respectively). In addition, the NLR values were significantly higher in the CAD patients than in the control subjects [1.99 (1.55-2.59) vs. 1.83 (1.39-2.44)], as were the plasma CRP levels [1.54 (0.81-3.34) vs. 1.52 (0.78-3.01), p=0.046].

The cohort in the current study consisted of 2,976 CAD patients, with a mean GS of 37.71 ± 33.45 [28 (12-52), range: 2 to 232 points]. The baseline demo-
We used Spearman and Pearson correlation analyses to examine the correlations between the NLR, WBC count and levels of WBC subtypes and the GS in the patients with CAD. As shown in Fig. 2, there were mild positive but significant correlations between the WBC count, neutrophil count, monocyte count and NLR and the GS, whereas no correlations were observed between the lymphocyte count and the GS in the present study.

ROC Curve Analysis

Fig. 3 shows the findings of the ROC curves analysis of the NLR, WBC count and levels of the WBC subtypes for predicting a high GS. The NLR was found to have the highest AUC at 0.63 (95% CI: 0.59-0.67, \(p = 0.000 \)) among all of the markers, even the hs-CRP level. As shown in Fig. 3, the AUC values of the other markers were all less than 0.60. In addition, an NLR of 2.04 was identified to be an effective cut-off point for detecting a high GS (\(> 41 \) points), with a sensitivity of 62.1% and a specificity of 54.8%. When we divided all subjects enrolled in this study into the two groups based on the NLR cut-off value (Table 5 and Fig. 4), the serum hs-CRP levels and GS values were significantly increased in the high-NLR group compared to that observed in the low-NLR group (1.35 (0.71-2.51) vs. 1.88 (0.91-4.06), \(p = 0.000 \) and 26 (12-48) vs. 30 (14-56), \(p = 0.000 \), respectively). More-
Laboratory parameters (NLR, hs-CRP level and WBC, neutrophil, lymphocyte and monocyte counts) according to the Gensini score (A, B).

NLR = neutrophil-to-lymphocyte ratio; WBC = white blood cell; hs-CRP = high-sensitivity C-reactive protein. The NLR and hs-CRP are presented as the median with 25th and 75th percentiles. p-valuea = p-value for trend; p-valueb = p-value for a high GS (>41 points) versus a normal or low GS.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Low GS ($<18, n=989)$</th>
<th>Intermediate GS (18-41, $n=995$)</th>
<th>High GS ($>41, n=992$)</th>
<th>p-valuea</th>
<th>p-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (10^9/L)</td>
<td>6.18 ± 1.55</td>
<td>6.38 ± 1.68</td>
<td>6.44 ± 1.71</td>
<td>0.001</td>
<td>0.012</td>
</tr>
<tr>
<td>Neutrophil (10^9/L)</td>
<td>3.69 ± 1.21</td>
<td>3.84 ± 1.30</td>
<td>3.94 ± 1.33</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Lymphocyte (10^9/L)</td>
<td>1.85 ± 0.58</td>
<td>1.91 ± 0.59</td>
<td>1.86 ± 0.64</td>
<td>0.118</td>
<td>0.520</td>
</tr>
<tr>
<td>Monocyte (10^9/L)</td>
<td>0.43 ± 0.15</td>
<td>0.44 ± 0.16</td>
<td>0.46 ± 0.17</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>NLR</td>
<td>1.89 (1.48-2.50)</td>
<td>1.94 (1.54-2.66)</td>
<td>2.10 (1.60-2.78)</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>hs-CRP (mg/L)</td>
<td>1.37 (0.71-2.67)</td>
<td>1.52 (0.75-3.07)</td>
<td>1.83 (0.95-3.67)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
and the severity of coronary stenosis. Multiple studies have demonstrated strong and consistent relationships between various inflammatory markers and cardiovascular disease, and the inflammatory process plays a key role in both the initiation and progression of atherosclerosis. It has also been demonstrated that the WBC count is an independent predictor of cardiovascular events and all-cause mortality and may be used to identify high-risk individuals without traditional cardiovascular risk factors.

Regarding stable CAD, parameters of WBCs and their subtypes, including the NLR, have been reported to be associated with the severity of CAD, as determined based on the number of diseased vessels. For example, Arbel et al. evaluated 3,005 consecutive patients undergoing coronary angiography for various indications and found that the NLR was related to the severity of CAD. Unfortunately, in that study, the CAD severity was assessed according to the number of diseased vessels. In the present study, we found that the counts of WBCs and their subtypes...
Fig. 2. Correlations between the NLR, hs-CRP level and WBC, neutrophil, lymphocyte and monocyte counts and the Gensini score in the CAD patients (A, B).

N = 2,976. NLR = neutrophil-to-lymphocyte ratio; WBC = white blood cell; hs-CRP = high-sensitivity C-reactive protein; CAD = coronary artery disease
were among the first to observe the significance of assessing the NLR in patients with stable CAD. In their prospective observational study, a total of 3,227 patients with angiographically assessed CAD without a history of acute MI were followed for more than six years\(^4\). The authors subsequently found that total WBC count was an independent predictor of death/MI in the patients with or at high risk for CAD, although the most effective risk prediction was observed for the NLR, with the hazard ratio increasing by 2.2-fold for quartile (Q) 4 versus Q1. Thereafter, Tsai J.C. and colleagues studied more than 800 high-risk Korean adult patients (with diabetes mellitus and metabolic syndrome) and determined that NLR was associated with both metabolic syndrome and the risk of ischemic cardiovascular disease\(^33\). Another prospective study analyzed the predictive ability for cardiac events of the differential WBC count versus

In fact, the NLR is a widely available marker of inflammation. For example, a high NLR has been reported to exhibit a correlation with the severity and both short- and long-term mortality of acute coronary syndrome (ACS), as well as the progression of heart failure, even in patients undergoing successful bare-metal stent implantation\(^11-13, 22, 28, 29\). It has also been reported that an increased NLR ratio is associated with the incidence of ventricular arrhythmia during PCI\(^30, 31\) and a worse outcome after CABG\(^11\). Moreover, an elevated NLR, both independently and in combination with other disease markers and risk factors, is a significant predictor of the development, progression and mortality of stable CAD\(^4, 11, 25, 32, 33\). Horne et al.

Table 1: Receiver operating characteristics (ROC) curve analysis of the predictive power of the NLR, WBC count and WBC subtype levels for a high GS.

<table>
<thead>
<tr>
<th>Variables</th>
<th>AUC</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>0.53</td>
<td>0.50-0.55</td>
<td>0.021</td>
</tr>
<tr>
<td>Neutrophil</td>
<td>0.54</td>
<td>0.52-0.56</td>
<td>0.000</td>
</tr>
<tr>
<td>Lymphocyte</td>
<td>0.52</td>
<td>0.50-0.54</td>
<td>0.001</td>
</tr>
<tr>
<td>Monocyte</td>
<td>0.53</td>
<td>0.50-0.55</td>
<td>0.002</td>
</tr>
<tr>
<td>NLR</td>
<td>0.63</td>
<td>0.59-0.67</td>
<td>0.000</td>
</tr>
<tr>
<td>hs-CRP</td>
<td>0.57</td>
<td>0.55-0.58</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Fig. 3. Receiver operating characteristics (ROC) curve analysis of the predictive power of the NLR, WBC count and WBC subtype levels for a high GS.

WBC = white blood cell; NLR = neutrophil-to-lymphocyte ratio; hs-CRP = high-sensitivity C-reactive protein
established risk factors in 422 CAD patients. In that study, a high NLR (5.19 ± 3.81), together with the CRP level, was found to be associated with significantly increased rates of cardiac death and non-fatal MI in patients with stable CAD during a three-year follow-up period. However, in all of these studies, the severity of CAD was assessed based on the number of diseased vessels. In addition, these studies focused pri-
In conclusion, the present data demonstrate that NLR is a valuable independent predictor of the severity of CAD assessed according to the GS; with an NLR of >2.04, thus indicates a higher risk for CAD and more severe CAD lesions.

Acknowledgments
This work was partly supported by the National Natural Scientific Foundation (81070171, 81241121), Specialized Research Fund for the Doctoral Program of Higher Education of China (2011106110013), Capital Special Foundation of Clinical Application Research (Z121107001012015), Capital Health Development Fund (2011400302) and Beijing Natural Science Foundation (7131014), awarded to Dr. Jian-Jun Li, MD, PhD.

Conflicts of Interest
None.

References
7) Mohammad M, Omid F: Components of the complete
16) Li JJ, Nie SP, Qian XW, Zeng HS, Zhang CY: Chronic inflammatory status in patients with coronary artery ectasia. Cytokine, 2009; 46: 61-64
19) Gensini GG: A more meaningful scoring system for determining the severity of coronary heart disease [letter]. Am J Cardiol, 1983; 51: 606
34) Tanındı A, Erkan AF, Ekici B, Alhan A, Töre HF: Neutrophil to lymphocyte ratio is associated with more extensive, severe and complex coronary artery disease and impaired myocardial perfusion. Türk Kardiyol Dern Ars, 2014; 42: 125-130