Original Article

The Release of Monocyte-Derived Tissue Factor-Positive Microparticles Contributes to a Hypercoagulable State in Idiopathic Membranous Nephropathy

Gui Hua Wang, Jian Lu, Kun Ling Ma, Yang Zhang, Ze Bo Hu, Pei Pei Chen, Chen Chen Lu, Xiao Liang Zhang and Bi Cheng Liu

Gui Hua Wang and Jian Lu are contributed equally to this work.

Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China

Aim: Idiopathic membranous nephropathy (IMN) is an immune-mediated inflammatory disease characterized by a high risk of thromboembolic complications. Microparticles (MPs), a type of extracellular vesicles, have procoagulant properties, especially when they display tissue factor (TF). This study aimed to investigate whether circulating TF-positive MPs contributed to the hypercoagulable state in patients with IMN.

Methods: Twenty adult IMN patients and fourteen healthy subjects were included in the study. The basic indexes of a routine biochemical examination and coagulative function were determined. The plasma levels of MPs were detected by flow cytometry, and TF activity of MPs was examined using an assay kit. The plasma levels of lipopolysaccharide (LPS) were measured by an enzyme-linked immunosorbent assay.

Results: Total circulating MPs were not increased in patients with IMN compared with healthy controls. Circulating CD14⁺/TF⁺ MPs were significantly increased in IMN patients, but this achieved significance was not observed in CD41⁺/TF⁺ MPs between the two groups. Interestingly, the circulating TF-positive MPs were increased significantly. Plasma MPs TF assays revealed high procoagulant activity, which was positively associated with the D-dimer level in IMN. In addition, circulating LPS in IMN patients were significantly higher than those in the controls. Furthermore, after two hours' incubation with healthy whole blood, LPS enhanced the release of circulating TF-positive MPs and the TF activity of MPs.

Conclusion: Increased circulating LPS may mediate the release of monocyte-derived TF-positive MPs, which further contributes to the hypercoagulable state in IMN patients. These findings provide an additional mechanism by which patients with IMN have a higher risk of thromboembolic complication.

Key words: Lipopolysaccharide, Tissue factor, Microparticles, Hypercoagulable state, Idiopathic membranous nephropathy

Introduction

Thromboembolic events are well recognized as a common complication in patients with idiopathic nephrotic syndrome (INS). Furthermore, venous thromboembolic events are reported to occur more frequently in idiopathic membranous nephropathy (IMN) than in other types of INS^{1,2}. In recent years, several studies have confirmed that patients with IMN have a higher risk of cardiovascular events (CVEs)^{3,4}. The underlying mechanisms are related to increased prothrombotic factors, decreased antithrombotic factors, and impaired thrombolytic activity. Furthermore, hypoalbuminemia, hyperlipidaemia, and immune complex activation of the clotting system participate in the hypercoagulable state of IMN⁵.
Traditionally, hypoalbuminemia has been one of the most important risk factors for the hypercoagulable state that results in thromboembolic events in IMN. However, the mechanism accounting for the increased risk of thrombosis in IMN is still unknown. Moreover, some studies have indicated that even though there is no difference in serum albumin level, thromboembolic complications may be more likely to occur in patients with IMN, indicating that there might be other mechanisms involved.

Microparticles (MPs) are a heterogeneous population of small extracellular vesicles (0.1–1 µm in diameter) released from almost all cell types via outward membrane budding. MPs mediate intercellular communication by delivering cargos from parent cells. Recently, circulating MPs have been proposed to promote coagulation by the exposure of phosphatidylserine (PS) and tissue factor (TF), which is the trigger of the clotting system. MPs TF activity was significantly increased in IMN patients, although the number of circulating PS-positive MPs was not increased, which contributed to the procoagulant imbalance. Circulating TF-positive MPs promote thrombosis at the site of injury and partially represent the hypercoagulability in diabetic vascular complications. Therefore, we assumed that the circulating TF-positive MPs might be increased and involved in the hypercoagulable state in patients with IMN.

It is well known that IMN results from immune disorder-mediated glomerulonephritis. Some studies have shown the involvement of inflammatory mediators in the inflammatory process responsible for the progression of IMN, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alfa (TNF-α). Lipopolysaccharide (LPS), one of the inflammatory mediators, augments the development of glomerulonephritis. Meanwhile, LPS increased whole-blood monocyte TF surface expression and TF functional activity in circulating MPs. Therefore, this study hypothesized that LPS may contribute to the hypercoagulable state in IMN patients by inducing the release of circulating TF-positive MPs.

We conducted a cross-sectional study to investigate the plasma levels of TF-positive MPs and their correlation with the hypercoagulable state in IMN. Furthermore, we examined the circulating LPS level and demonstrated its effect on the release of monocyte-derived TF-positive MPs in vitro. We also explored their contribution to thromboembolic complications in IMN patients.

Materials and Methods

Research Subjects

Twenty adult IMN patients (≥ 18 years old) with the diagnosis of IMN confirmed by renal biopsy were recruited for the study at the Institute of Nephrology, Zhongda Hospital, Southeast University, China. The control group included 14 healthy subjects who were not taking any medication and did not have any significant medical problems. The exclusion criteria were as following: severe acute or chronic infection; use of antibiotics or anticoagulant drugs 30 days prior to the study; an estimated glomerular filtration rate < 60 ml/min/1.73 m²; needed transfusion of platelets or plasma; secondary MN (malignancy, systemic lupus erythematosus, hepatitis B, hepatitis C, and human immunodeficiency virus); and a previous history of diabetes, coronary artery diseases, or autoimmune disease, alcohol abuse, and pregnancy. The ethical committee of Zhongda Hospital approved the study. All patients provided written informed consent. The following baseline data were collected: age, sex, hemoglobin, platelet count, serum albumin, high-density lipoprotein cholesterol (HDL-C), urea nitrogen, and serum creatinine.

Blood Sample Preparation

All the patients and healthy volunteers had fasted for at least 12 hours before blood collection. Peripheral venous blood was collected with or without 3.8% sodium citrate anticoagulant between 8 and 9 a.m. The blood samples were checked for routine biochemical indexes and coagulative function assay after centrifugation at 2,500 g for 15 minutes at room temperature. Then, the plasma was removed by two subsequent centrifugations at 2,500 g for 15 minutes at room temperature.

Whole-Blood Experiments In Vitro

Whole blood was obtained from five healthy donors using sodium citrate or EDTA as anticoagulant. Each blood sample was divided into two parts, one for the control group and the other for LPS group. The samples were incubated with LPS (Sigma, 100 ng/ml) or PBS at 37°C for two hours. Plasma was obtained by centrifugation as the above and subsequently used for the acquisition of MPs.

Collection and Quantification of Circulating MPs

Circulating MPs were isolated using differential centrifugation, as previously described. Briefly, platelets were removed by two subsequent centrifugations at 2,500 g for 15 minutes at room temperature. Then

Materials and Methods

Research Subjects

Twenty adult IMN patients (≥ 18 years old) with the diagnosis of IMN confirmed by renal biopsy were recruited for the study at the Institute of Nephrology, Zhongda Hospital, Southeast University, China. The control group included 14 healthy subjects who were not taking any medication and did not have any significant medical problems. The exclusion criteria were as following: severe acute or chronic infection; use of antibiotics or anticoagulant drugs 30 days prior to the study; an estimated glomerular filtration rate < 60 ml/min/1.73 m²; needed transfusion of platelets or plasma; secondary MN (malignancy, systemic lupus erythematosus, hepatitis B, hepatitis C, and human immunodeficiency virus); and a previous history of diabetes, coronary artery diseases, or autoimmune disease, alcohol abuse, and pregnancy. The ethical committee of Zhongda Hospital approved the study. All patients provided written informed consent. The following baseline data were collected: age, sex, hemoglobin, platelet count, serum albumin, high-density lipoprotein cholesterol (HDL-C), urea nitrogen, and serum creatinine.

Blood Sample Preparation

All the patients and healthy volunteers had fasted for at least 12 hours before blood collection. Peripheral venous blood was collected with or without 3.8% sodium citrate anticoagulant between 8 and 9 a.m. The blood samples were checked for routine biochemical indexes and coagulative function assay after centrifugation at 2,500 g for 15 minutes at room temperature. Then, the plasma was removed by two subsequent centrifugations at 2,500 g for 15 minutes at room temperature. The plasma was then centrifuged at 3,000 g for 10 minutes. The plasma samples were incubated with LPS (Sigma, 100 ng/ml) or PBS at 37°C for two hours. Plasma was obtained by centrifugation as the above and subsequently used for the acquisition of MPs.

Whole-Blood Experiments In Vitro

Whole blood was obtained from five healthy donors using sodium citrate or EDTA as anticoagulant. Each blood sample was divided into two parts, one for the control group and the other for LPS group. The samples were incubated with LPS (Sigma, 100 ng/ml) or PBS at 37°C for two hours. Plasma was obtained by centrifugation as the above and subsequently used for the acquisition of MPs.

Collection and Quantification of Circulating MPs

Circulating MPs were isolated using differential centrifugation, as previously described. Briefly, platelets were removed by two subsequent centrifugations at 2,500 g for 15 minutes at room temperature. Then...
the supernatant was centrifuged at 18,000 g for 60 minutes to pellet the MPs. The pellets were resuspended by annexin V binding buffer and then incubated with FITC-anti-annexin V (BD Pharmingen) and APC-anti-human TF (BioLegend) for 30 minutes at 4°C in the dark. Then 0.8 µm and 3 µm beads were used for gating and counting control, respectively. Circulating TF-positive MPs were detected as annexin V+/TF+ particles by a FACS Calibur cytometer (BD Biosciences)16). To investigate the cellular origin of circulating TF-positive MPs, samples were incubated with PE-anti-Human CD41 or PE-anti-Human CD14 (BioLegend). Analysis was performed using FlowJo (Tree Star Inc.) software.

MPs TF Activity Assay

Plasma was collected using EDTA as the anticoagulant. TF activity of circulating MPs was analyzed as previously described using a tissue factor human chromogenic activity assay kit (Abcam)17). The assay measures the ability of lipoprotein TF/factor VIIa (F VIIa) to activate factor X (FX) to factor Xa. Briefly, the desired volume of assay mix was freshly prepared, including assay diluent 50 µL, FVII 10 µL, and FX 10 µL, and 70 µl of the assay mix was added to each well. Then 10 µL TF standard or sample was added to each well and mixed gently. The mixed reaction system was then incubated at 37°C for 30 minutes in a humid incubator. After that, FXa 20 µL was added to each well and incubated at 37°C for 30 minutes. Finally, the absorbance at 405 nm was assayed on a microplate reader.

Plasma Levels of LPS

Plasma levels of LPS were measured using a commercial enzyme-linked immunosorbent assay (ELISA) kit (Elabscience) according to the manufacturer’s instructions. Briefly, 50 µL of the standard, the blank, or a sample was added to each well and incubated for 45 minutes at 37°C. After incubation, the samples were read at 450 nm using a microplate reader. The values are expressed as ng/ml. The detection limit for LPS was established at 0.94 ng/mL. The intra- and inter-assay coefficients of variation were within 10%.

Statistical Analysis

Categorical variables are expressed as percentages, and continuous variables are reported as the mean ± standard deviation (SD). Comparisons between the controls and the IMN patients were analyzed using Student’s t-test or the Mann-Whitney U test for continuous variables and the chi-square test for categorical variables. Spearman’s correlation analysis was used to perform the correlation calculation. P < 0.05 was considered statistically significant. All the analyses were performed with SPSS 19.0 and GraphPad Prism 7.0.

Results

Circulating TF-Positive MPs were Increased in Patients with IMN

The basic characteristics of all the subjects are described in Table 1. Basic data for the controls and IMN patients were collected in terms of age, sex, hemoglobin levels, platelet counts, blood urea nitrogen, and HDL-C levels. The serum albumin levels in IMN patients were significantly lower than those in the controls, which was consistent with the diagnosis of nephrotic syndrome. As shown in Fig. 1A and 1B, total circulating MPs indicated as PS-positive were examined using flow cytometry. There was no statistical difference between IMN patients and the controls (P = 0.078). However, we found that there were a portion of PS-positive MPs that were much higher than that in the controls (17.1 ± 5.7) × 10^6/mL versus (10.9 ± 5.3) × 10^6/mL, P = 0.008, Fig. 1C). To investigate the cellular origin of circulating TF-positive MPs, antibodies against CD14 (monocytes) or CD41 (platelets) were also used. Circulating CD14+/TF+ MPs were sig-

Table 1. Basic characteristics of IMN patients and control subjects

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 14)</th>
<th>IMN (n = 20)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>44 ± 11</td>
<td>52 ± 14</td>
<td>0.082</td>
</tr>
<tr>
<td>Sex male, n (%)</td>
<td>11 (78.5)</td>
<td>16 (80)</td>
<td>0.662</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>46.7 ± 3.4</td>
<td>24.3 ± 4.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>148 ± 15.3</td>
<td>138 ± 5.4</td>
<td>0.158</td>
</tr>
<tr>
<td>Platelet (10^9/L)</td>
<td>212 ± 65.7</td>
<td>218 ± 44.4</td>
<td>0.737</td>
</tr>
<tr>
<td>BUN (mM)</td>
<td>4.8 ± 1.2</td>
<td>5.0 ± 1.5</td>
<td>0.207</td>
</tr>
<tr>
<td>Creatine (µM)</td>
<td>73.3 ± 14.3</td>
<td>79.2 ± 11.9</td>
<td>0.304</td>
</tr>
<tr>
<td>HDL-C (mM)</td>
<td>1.45 ± 0.32</td>
<td>1.66 ± 0.39</td>
<td>0.104</td>
</tr>
</tbody>
</table>

IMN, idopathic membranous nephropathy; BUN, blood urea nitrogen, HDL-C, high density lipoprotein cholesterol
The data shown in Fig. 2A indicated that D-dimer level was significantly elevated in IMN patients compared with controls ($P = 0.001$), suggesting a hypercoagulable state in patients with IMN. The correlation analysis revealed that the number of TF-positive MPs was significantly increased in IMN patients compared with the controls ($P = 0.005$, Fig. 1D). However, this achieved significance was not observed in CD41$^+$/TF$^+$ MPs between these two groups ($P = 0.47$, Fig. 1E). These results suggest that the circulating TF-positive MPs were increased in patients with IMN, which were primarily derived from monocytes but not platelets.

Circulating MPs TF Activity was Correlated with the Hypercoagulable State in Patients with IMN

The data shown in Fig. 2A indicated that D-dimer level was significantly elevated in IMN patients compared with controls ($P = 0.001$), suggesting a hypercoagulable state in patients with IMN. Correlation analysis revealed that the number of TF-positive MPs was...
Increased Circulating LPS Level was Positively Associated with TF-Positive MPs in IMN Patients

To explore the cause for increased levels of monocyte-derived TF-positive MPs in IMN, circulating LPS level was examined, which is one of the most prominent pro-inflammatory components. Compared with the healthy control, the plasma level of LPS was increased in patients with IMN (Fig. 3A, \(P=0.039 \)). Furthermore, the increased circulating LPS level was positively correlated with the number of TF-positive MPs (Fig. 3B, \(r=0.6932, P=0.0007 \)) and MPs TF activity (Fig. 3C, \(r=0.7153, P=0.0004 \)) in IMN patients. These data indicate that increased circulating LPS level might be the reason for increased procoagulant TF-positive MPs in IMN.

LPS may Mediate the Release of TF-Positive MPs

To confirm the effect of LPS on the release of circulating TF-positive MPs, we collected MPs from human whole blood, which was incubated with LPS in vitro. After two hours’ incubation, the number of monocyte-derived TF-positive MPs was increased significantly (Fig. 4A, \(P<0.001 \)). MPs TF activity was also elevated in LPS group compared with the control group (Fig. 4B, \(P<0.001 \)). These results suggest that LPS may mediate the release of TF-positive MPs in IMN.
Activity MPs, as a novel medium for intercellular communication, possess procoagulant effect\(^1\). In the current study, we did not find a statistical difference in the number of circulating PS-positive MPs between the patients with IMN and healthy controls. Interestingly, TF-positive MPs were increased in IMN. Some studies reported that cancer patients with higher levels of circulating TF-positive MPs had a sevenfold increased risk of thrombosis\(^2\). Further analysis also indicated that circulating TF-positive MPs primarily derived from monocytes. A recent study showed that increased circulating MPs in human endotoxemia model expressed both TF and CD14\(^2\). Shet and colleagues also reported that monocyte-derived TF-positive MPs were elevated in sickle cell crisis\(^2\). Previous studies and our results indicate that monocytes are likely to be the major source of circulating TF-positive MPs in health and diseases.

However, there was no correlation between the number of circulating TF-positive MPs and the D-dimer activity\(^2\) MPs, as a novel medium for intercellular communication, possess procoagulant effect\(^2\).

In the current study, we did not find a statistical difference in the number of circulating PS-positive MPs between the patients with IMN and healthy controls. Interestingly, TF-positive MPs were increased in IMN. Some studies reported that cancer patients with higher levels of circulating TF-positive MPs had a sevenfold increased risk of thrombosis\(^2\). Further analysis also indicated that circulating TF-positive MPs primarily derived from monocytes. A recent study showed that increased circulating MPs in human endotoxemia model expressed both TF and CD14\(^2\). Shet and colleagues also reported that monocyte-derived TF-positive MPs were elevated in sickle cell crisis\(^2\). Previous studies and our results indicate that monocytes are likely to be the major source of circulating TF-positive MPs in health and diseases.

However, there was no correlation between the number of circulating TF-positive MPs and the D-dimer activity.

Discussion

In the present study, we provided the first evidence that increased circulating TF-positive MPs contribute to the hypercoagulable state in patients with IMN. More importantly, we demonstrated that elevated circulating TF-positive MPs and their increased TF activity may be a consequence of elevated plasma LPS.

Previous studies have suggested that the hypercoagulable state in INS\(^8\), which may result in the development of thromboembolic events, primarily depends on hypoalbuminemia and hyperlipidaemia, especially in IMN patients. In this study, plasma level of D-dimer was significantly increased in IMN, which indicates hypercoagulable state and secondary hyperfibrinolysis. TF, trigger of the coagulation cascade, plays a crucial role in the development of thrombosis\(^9\). Some studies have demonstrated that shedding of TF-containing MPs rather than spliced TF is the main source of TF activity\(^2\) MPs, as a novel medium for intercellular communication, possess procoagulant effect\(^2\).

In the current study, we did not find a statistical difference in the number of circulating PS-positive MPs between the patients with IMN and healthy controls. Interestingly, TF-positive MPs were increased in IMN. Some studies reported that cancer patients with higher levels of circulating TF-positive MPs had a sevenfold increased risk of thrombosis\(^2\). Further analysis also indicated that circulating TF-positive MPs primarily derived from monocytes. A recent study showed that increased circulating MPs in human endotoxemia model expressed both TF and CD14\(^2\). Shet and colleagues also reported that monocyte-derived TF-positive MPs were elevated in sickle cell crisis\(^2\). Previous studies and our results indicate that monocytes are likely to be the major source of circulating TF-positive MPs in health and diseases.

However, there was no correlation between the number of circulating TF-positive MPs and the D-dimer activity.

Fig. 3. Increased circulating LPS was positively associated with TF-positive MPs in IMN patients.

(A) Plasma LPS level in the controls (\(n=14\)) and the IMN patients (\(n=20\)) was measured using an ELISA assay kit. The data are shown as median (horizontal bar), 25th and 75th percentile (boxes), and 10th and 90th percentile (error bar). (B) The correlation analysis between the plasma levels of LPS and monocyte-derived TF-positive MPs in IMN patients (\(n=20\)). (C) The correlation analysis between LPS and MPs TF activity in IMN patients. \(r\), correlation coefficient; \(P\), significance level.
inflammatory disease. Under healthy conditions, only small quantities of LPS pass through the intestinal barrier during nutrient ingestion. In this study, we found for the first time that the plasma LPS was significantly increased in IMN patients compared with the controls. Previous studies suggested that enhanced intestinal permeability may account for the increase of circulating LPS.

Both immunoinflammatory reaction and hypoalbuminemia might be the reason for the increased intestinal permeability. LPS is commonly used as an inducer for experimental glomerulonephritis models, which might be correlated with the LPS receptor toll-like receptor (TLR) 4 and its coreceptor CD14 expressed in podocytes. Our findings suggested that there might be some potential correlation between LPS and the pathogenesis of IMN. Previous studies found that the serum LPS in type 1 diabetic patients was increased and positively correlated with the renal injury. This makes us further identify whether elevated LPS contributed to the release of monocyte-derived TF-positive MPs in IMN.

Correlation analysis showed that LPS was positively associated with the number of TF-positive MPs and MPs TF activity in patients with IMN. In vitro studies further confirmed that LPS mediated the release of TF-positive MPs and their procoagulant activity. Landsem et al. demonstrated that LPS administration activated the coagulation system by upregulation of TF expression and activity in circulating MPs. These findings suggest that increased plasma MPs TF activity in patients with IMN contributes to the hypercoagulable state, which might be predictive of thrombosis.

Systemic inflammation induces the release of MPs from parent cells. Circulating LPS has been considered to be associated with chronic inflammation, dyslipidaemia, and obesity. LPS is an important microbial trigger that stimulates the innate immunity of the host. The IMN is characterized as an immune-mediated inflammatory disease. Under healthy conditions, only small quantities of LPS pass through the intestinal barrier during nutrient ingestion. In this study, we found for the first time that the plasma LPS was significantly increased in IMN patients compared with the controls. Previous studies suggested that enhanced intestinal permeability may account for the increase of circulating LPS.

Both immunoinflammatory reaction and hypoalbuminemia might be the reason for the increased intestinal permeability. LPS is commonly used as an inducer for experimental glomerulonephritis models, which might be correlated with the LPS receptor toll-like receptor (TLR) 4 and its coreceptor CD14 expressed in podocytes. Our findings suggested that there might be some potential correlation between LPS and the pathogenesis of IMN. Previous studies found that the serum LPS in type 1 diabetic patients was increased and positively correlated with the renal injury. This makes us further identify whether elevated LPS contributed to the release of monocyte-derived TF-positive MPs in IMN.

Correlation analysis showed that LPS was positively associated with the number of TF-positive MPs and MPs TF activity in patients with IMN. In vitro studies further confirmed that LPS mediated the release of TF-positive MPs and their procoagulant activity. Landsem et al. demonstrated that LPS administration activated the coagulation system by upregulation of TF expression and activity in circulating MPs. These findings suggest that increased plasma MPs TF activity in patients with IMN contributes to the hypercoagulable state, which might be predictive of thrombosis.

Systemic inflammation induces the release of MPs from parent cells. Circulating LPS has been considered to be associated with chronic inflammation, dyslipidaemia, and obesity. LPS is an important microbial trigger that stimulates the innate immunity of the host. The IMN is characterized as an immune-mediated inflammatory disease. Under healthy conditions, only small quantities of LPS pass through the intestinal barrier during nutrient ingestion. In this study, we found for the first time that the plasma LPS was significantly increased in IMN patients compared with the controls. Previous studies suggested that enhanced intestinal permeability may account for the increase of circulating LPS.

Both immunoinflammatory reaction and hypoalbuminemia might be the reason for the increased intestinal permeability. LPS is commonly used as an inducer for experimental glomerulonephritis models, which might be correlated with the LPS receptor toll-like receptor (TLR) 4 and its coreceptor CD14 expressed in podocytes. Our findings suggested that there might be some potential correlation between LPS and the pathogenesis of IMN. Previous studies found that the serum LPS in type 1 diabetic patients was increased and positively correlated with the renal injury. This makes us further identify whether elevated LPS contributed to the release of monocyte-derived TF-positive MPs in IMN.

Correlation analysis showed that LPS was positively associated with the number of TF-positive MPs and MPs TF activity in patients with IMN. In vitro studies further confirmed that LPS mediated the release of TF-positive MPs and their procoagulant activity. Landsem et al. demonstrated that LPS administration activated the coagulation system by upregulation of TF expression and activity in circulating MPs. These findings suggest that increased plasma MPs TF activity in patients with IMN contributes to the hypercoagulable state, which might be predictive of thrombosis.

Systemic inflammation induces the release of MPs from parent cells. Circulating LPS has been considered to be associated with chronic inflammation, dyslipidaemia, and obesity. LPS is an important microbial trigger that stimulates the innate immunity of the host. The IMN is characterized as an immune-mediated inflammatory disease. Under healthy conditions, only small quantities of LPS pass through the intestinal barrier during nutrient ingestion. In this study, we found for the first time that the plasma LPS was significantly increased in IMN patients compared with the controls. Previous studies suggested that enhanced intestinal permeability may account for the increase of circulating LPS.

Both immunoinflammatory reaction and hypoalbuminemia might be the reason for the increased intestinal permeability. LPS is commonly used as an inducer for experimental glomerulonephritis models, which might be correlated with the LPS receptor toll-like receptor (TLR) 4 and its coreceptor CD14 expressed in podocytes. Our findings suggested that there might be some potential correlation between LPS and the pathogenesis of IMN. Previous studies found that the serum LPS in type 1 diabetic patients was increased and positively correlated with the renal injury. This makes us further identify whether elevated LPS contributed to the release of monocyte-derived TF-positive MPs in IMN.

Correlation analysis showed that LPS was positively associated with the number of TF-positive MPs and MPs TF activity in patients with IMN. In vitro studies further confirmed that LPS mediated the release of TF-positive MPs and their procoagulant activity. Landsem et al. demonstrated that LPS administration activated the coagulation system by upregulation of TF expression and activity in circulating MPs. These findings suggest that increased plasma MPs TF activity in patients with IMN contributes to the hypercoagulable state, which might be predictive of thrombosis.
This study also has some limitations. Besides IMN, other types of INS were not studied. The small sample size in this study remains a limitation. Larger, prospective studies are needed to learn more about the role of LPS and monocyte-derived TF-positive MPs in IMN.

In conclusion, increased circulating LPS may mediate the release of monocyte-derived TF-positive MPs which further contribute to the hypercoagulable state in IMN patients. These findings provide an additional mechanism by which patients with IMN have a higher risk of thromboembolic complication.

Acknowledgments and Notice of Grant Support

This work was supported by the National Natural Science Foundation of China (grant 81470957), the Jiangsu Province Social Development Project (BE2018744), the Project for Jiangsu Provincial Medical Talent (ZDRCA2016077), the Jiangsu Province Six Talent Peaks Project (2015-WSN-002), the Fundamental Research Funds for the Central Universities (KYCX18-0182, KYC17-0169, KYZZ15-0061), and the Jiangsu Province Ordinary University Graduate Research Innovation Project (SJZZ16-004).

References

8) Rautou PE, Vion AC, Luyendyk JP, Mackman N: Circulating microparticle tissue factor activity is increased in patients with cirrhosis. Hepatology, 2014; 60: 1793-1795
13) Pfeifer E, Polz J, Mannel DN, Mostbock S: Inflammation augments the development of experimental glomerulonephritis by accelerating proteinuria and enhancing mortality. Eur Cytokine Netw, 2012; 23: 12-14

