Review

Anti-inflammatory Nanoparticle for Prevention of Atherosclerotic Vascular Diseases

Jun-ichiro Koga1, 2, Tetsuya Matoba2 and Kensuke Egashira1, 2

1The Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
2The Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Recent technical innovation has enabled chemical modifications of small materials and various kinds of nanoparticles have been created. In clinical settings, nanoparticle-mediated drug delivery systems have been used in the field of cancer care to deliver therapeutic agents specifically to cancer tissues and to enhance the efficacy of drugs by gradually releasing their contents. In addition, nanotechnology has enabled the visualization of various molecular processes by targeting proteinases or inflammation. Nanoparticles that consist of poly (lactic-co-glycolic) acid (PLGA) deliver therapeutic agents to monocytes/macrophages and function as anti-inflammatory nanoparticles in combination with statins, angiotensin receptor antagonists, or agonists of peroxisome proliferator-activated receptor-γ (PPARγ). PLGA nanoparticle-mediated delivery of pitavastatin has been shown to prevent inflammation and ameliorated features associated with plaque ruptures in hyperlipidemic mice. PLGA nanoparticles were also delivered to tissues with increased vascular permeability and nanoparticles incorporating pitavastatin, injected intramuscularly, were retained in ischemic tissues and induced therapeutic arteriogenesis. This resulted in attenuation of hind limb ischemia. Ex vivo treatment of vein grafts with imatinib nanoparticles before graft implantation has been demonstrated to inhibit lesion development. These results suggest that nanoparticle-mediated drug delivery system can be a promising strategy as a next generation therapy for atherosclerotic vascular diseases.

J Atheroscler Thromb, 2016; 23: 000-000.

Key words: Nanoparticle, Inflammation, Statin, Atherosclerosis

Recent Advances in Drug Delivery System

Atherosclerotic vascular diseases, including acute myocardial infarction and stroke, are life-threatening diseases. Monocyte/macrophage-mediated inflammation is one of the central mechanisms of plaque formation and subsequent atherothrombotic complications1, 2. Activated macrophages also contribute to the pathogenesis of various metabolic disorders including fatty liver disease and obesity3. The incidence of acute myocardial infarction has been increasing in Japan according to lifestyle changes such as Western style diets and physical inactivity4, 5. Current therapies, including intensive cholesterol lowering by HMG-CoA (hydroxymethylglutaryl-CoA) reductase inhibitor (statin), are not sufficient to prevent future cardiovascular events. However, statin has been shown to have several favorable effects including antioxidant effect or anti-inflammatory effects6, 7. As shown in the JUPITER trial, intensive cholesterol lowering therapy in patients with hs-CRP ≥2 mg/L decreased 44% of the major cardiovascular events, but half of the cardiovascular events were not prevented8. Therefore, novel therapeutics targeting unrecognized residual risk factors other than currently known risk factors, i.e., LDL cholesterol, hypertension, diabetes etc., are desired. On the other hand, technical innovations in the field of drug delivery system have made it possible to deliver...
various drugs to specific organs or cells. This approach could maximize the drug efficacies while reducing systemic undesired effects. In this review, we summarize the current progress of nanotechnology in atherosclerotic vascular diseases including our own results.

Nanotechnology-Based Drug Delivery System as a Therapeutic Modality

In the past decade, various nanomaterials were created and some of them have been already used in clinical settings. Examples of nanomaterials include nanotubes\(^9\), nanorod\(^11\), or dendrimers\(^12\). The most popular one is the nanosphere such as a micelle, liposome or, polymer nanoparticle. Some nanoparticles target specific types of cells through modifying the surface of the particles (antibodies\(^13\), protein\(^15\)). Some nanoparticles are sensitive to specific pH or specific temperature and release encapsulated agents specifically in the targeted tissues/cells\(^16\). These intelligent nano-sized delivery systems have excellent targeting efficacy and can minimize undesired adverse effects in non-targeting sites. Many materials, including high molecular weight polymers, lipids, metals (gold etc.) and carbon, are used to formulate various types of nanomaterials (Table 1)\(^20\). In general, nanomaterial-based drug delivery systems have the following advantages: 1) incorporation of high payload of drugs; 2) improved pharmacokinetics and bioavailability; and 3) surface functionalization\(^21\). In vivo kinetics of these nanomaterials predominantly depends on the particle size. Many spherical nanoparticles with diameters of 10–300 nm have prolonged retention time in circulating blood by escaping elimination at the glomeruli in the kidneys. Such nanoparticles also escape from extravasation depending on the endothelial barrier. Relatively large nanoparticles with more than 60–80 nm diameters escape from extravasation in capillaries of normal tissues that have fenestrae between 60–80 nm. In tumor tissues or at the site of inflammation, the integrity of these endothelial layers is impaired and the nanoparticles can extravasate to the extravascular space through the enlarged interspace between endothelial cells. In tumor tissues, immature lymphatic vessels retard elimination of nanoparticles. These effects are known as enhanced permeability and retention effects\(^22, 23\). Surface modification with polyethylene glycol (PEG) prevents entrapment of nanoparticles by the reticuloendothelial system due to its hydrophilic property. Therefore, these nanoparticles are called stealth nanoparticles\(^24, 25\).

Nanoparticles as a Research Tool for Atherosclerosis

Clinical applications of nanoparticles are advanced in the field of diagnostic medicine. For example, magnetic nanoparticles with iron cores are available in MRI for macrophage imaging\(^26\). These so-called superparamagnetic iron oxide (SPIO) nanoparticles are used as a negative contrast agent in MRI. The iron core is modified with hydrophilic polymers including dextran, carboxymethylated dextran, polyvinyl alcohol, starches, chitosan, polymethyl methacrylate, PEG, poly(lactic-co-glycolic) acid (PLGA), polyvinylpyrrolidone, and polyacrylic acid\(^27\). These particles have been tested in patients to evaluate inflammation, plaque vulnerability, and therapeutic effects of lipid lowering drugs, especially in the carotid arteries of patients\(^26, 28, 29\).

Adhesion molecules are also targets of molecular imaging. Under hyperlipidemic conditions, expressions of adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), increase in endothelial cells and promote attachment of monocytes recruited by monocyte chemoattractant protein-1 (MCP-1)\(^30-32\). Therefore, these molecules could be a target for monitoring the inflammatory milieu of athero-prone vasculatures.

Table 1. Nanoparticles used for research of atherosclerosis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Micelle</th>
<th>Liposome</th>
<th>Polymeric nanosphere</th>
<th>Dendrimer</th>
<th>Carbon nanotube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size</td>
<td>1-100 nm</td>
<td>40-1,000 nm</td>
<td>20-1,000 nm</td>
<td>3-20 nm</td>
<td>1x20-40 nm</td>
</tr>
</tbody>
</table>

| Advantage | Easily synthesized, Stable in the body | Safely metabolized, interaction with membrane | Particle size is adjustable, Excellent storage stability | Delivery of hydrophobic agents | Chemical modification, photo dynamic therapy |

| Reference | 53-55 | 36, 37 | 45, 49 | 56, 57 | 58, 59 |
Weissleder et al. successfully visualized VCAM-1 in atherosclerotic plaques of ApoE-deficient mice by using MRI and cross-linked iron oxide nanoparticle modified with VCAM-1 ligand. In addition, Samuel et al. reported a nanoprobe for MRI that has gadolinium core and modified with perfluorocarbon and anti-αvβ3-integlin antibody. This particle was able to visualize early atherosclerotic changes in the carotid artery of hyperlipidemic rabbits.

In the preclinical stage, nanoparticles have been used as a research tool to visualize various molecular processes in atherosclerotic model animals. Nano-sized probes with near infrared fluorescence (NIRF) are often used. NIRF probes have excitation/emission wavelengths between 600–900 nm and the absorbance of fluorescence by hemoglobin or water is negligible in this range of wavelength. These probes are designed to have a protease-specific quenched substrate, which is inserted between the fluorescence and carrier vehicle. Once the substrate is cleaved by specific proteinases (matrix metalloproteinase (MMP), cathepsin etc.), the probe elaborates NIRF signals (activated state). These probes are used in molecular imaging to evaluate protease activities and the therapeutic efficacy of various drugs on these proteases. Nanoparticles incorporating siRNA could be also as an excellent research tool. By using this kind of nanoparticle, two or more genes are knocked down simultaneously. In combination with cell type-specific nanoparticles, specific genes can be knocked down in live animals without time-consuming and costly procedures (i.e., establishment of genetically-altered mice).

PLGA Nanoparticles for the Treatment of Cardiovascular Diseases

We have developed a drug delivery system based on PLGA nanoparticles (PLGA-NPs). PLGA-NPs were prepared by solvent emulsion diffusion method and the mean diameter of particles was 200 nm. In the bloodstream, PLGA-NPs of this size can escape from clearances in the kidneys and reticuloendothelial system, which prolongs the blood retention time. This results in effective drug delivery to the target site with increased vascular permeability. In addition, inflammatory cells, especially monocytes/macrophages, take up these sized particles, suggesting the potential of PLGA-NPs as a platform for novel anti-inflammatory therapies. PLGA-NPs also have the following advantages as a drug carrier: 1) PLGA has been used in the clinical settings for over forty years and there are limited safety concerns; and 2) PLGA can encapsulate both hydrophobic and hydrophilic agents including chemicals and nucleotides. After intravenous injection, PLGA-NPs are taken up by circulating monocytes within 30 minutes. Parts of nanoparticles are also delivered to the lymphocytes and neutrophils. In atherosclerotic plaques, PLGA nanoparticles are predominantly delivered to plaque macrophages and little, if any, were delivered to the lymphocytes and neutrophils.

We have demonstrated the efficacy of this drug delivery system in various animal models of atherosclerotic vascular diseases. By coating stents with PLGA-NPs containing anti-proliferative or anti-inflammatory drugs, these stents can be used to prevent restenosis after vascular intervention. We have reported a novel method to coat metal stents electrically and demonstrated the in vivo efficacy of stents coated with nanoparticles incorporated with imatinib mesylate, a tyrosine kinase inhibitor of PDGF receptor (Imatinib-NPs), or Pitava-NPs. After implantation of these stents in injured vasculatures, drugs coated on the stents surface are released and delivered to the surrounding vascular walls. This method has an advantage in that sufficient amount of drugs can be delivered locally to the injured vessels without apparent systemic adverse effects.

We recently reported that Pitava-NPs decreased inflammatory Ly-6C high monocytes in peripheral blood. In addition, Pitava-NPs decreased buried fibrous caps, a surrogate marker of healed plaque ruptures, in the brachiocephalic arteries of mice. Equivalent doses of pitavastatin did not show any apparent effects, suggesting that nanoparticle-mediated efficient drug delivery to inflammatory monocytes retards atherosclerotic lesion formation, plaque destabilization, and inhibits plaque ruptures. Furthermore, Pitava-NPs inhibited the formation of abdominal aortic aneurysms in hyperlipidemic ApoE-deficient mice (unpublished data). We recently reported data about PLGA-NPs incorporating pioglitazone (Pio-NP). In hyperlipidemic ApoE-deficient mice with angiotensin II infusion, Pio-NPs decreased the buried fibrous caps in mouse brachiocephalic arteries. Pio-NPs also decreased Ly-6C high monocytes in the peripheral blood and MMP activities, which were evaluated by molecular imaging with NIRF probes. These results suggest that the anti-inflammatory property of Pitava-NPs and Pio-NPs induced porality shift from inflammatory ‘M1’ macrophages to less inflammatory ‘M2’ macrophages.

The PLGA-NP mediated drug delivery system is effective in other vascular diseases. We have reported that the nanoparticle-mediated delivery of pitavastatin promotes therapeutic angiogenesis in hind limb isch-
grafting or revascularization of peripheral arterial diseases. The number of patients with critical limb ischemia increases each year and the number of patients undergoing bypass surgeries with vein grafts is also increasing. Occlusions of arterial-venous shunt in patients with end-stage renal failure can be considered a sort of vein graft disease. In these patients, intimal hyperplasia and subsequent obstruction of the graft causes life-threatening situations and a loss in the quality of life. Macrophage activation and smooth muscle

Fig. 1. PLGA nanoparticles and their in vivo targeting of circulating inflammatory monocytes.

(A) PLGA nanoparticles prepared by the emulsion solvent diffusion method. Images were taken by the transmission electron microscope (left) and scanning electron microscope (right). Scale bar indicates 1 µm. (B) Flow cytometry of circulating leukocytes. CD11b+CD115+ cells are quantified as circulating monocytes (upper panels). Inflammatory monocytes determined by Ly-6C expression were evaluated (lower panels). Right graphs show quantitative data. N = 3—4.
Acute myocardial infarction is a complication of advanced atherosclerosis. Percutaneous coronary intervention in acute phase decreases the infarct size, but reperfusion injury limits its therapeutic efficacy. After reperfusion of the coronary artery, monocytes/macrophages accumulate to the infarcted area. In acute phase, Ly-6Chigh inflammatory monocytes infiltrate into the infarcted area and differentiate into inflammatory ‘M1’ macrophages\(^{32}\). These macrophages release inflammation-promoting factors, which promote the pathobiology of vein graft lesion development\(^{36}\). Therefore, we have tested the effect of nanoparticles encapsulating tyrosine kinase inhibitors of PDGF (platelet-derived growth factor) receptor (Imatinib-NPs). Ex vivo treatments of vein grafts before implantation decreased intimal thickness\(^{51}\). In this case, smooth muscle cells took up the nanoparticles after incubating the graft with PLGA-NPs.
Conclusion

The recent progress of nanotechnology has resulted in the development of diagnostic modalities and therapeutic agents. In the cardiovascular field, some nanoparticles are undergoing clinical trials. For example, Alnylam presented the initial clinical data of nanoparticles containing PCSK9 (proprotein convertase subtilisin/kexin type 9) siRNA. Subcutaneous injection of this nanoparticle decreased LDL cholesterol up to 64%, even in patients with prior statin usage.

Our data indicate that anti-inflammatory PLGA-NPs could be a promising strategy to treat various cardiovascular diseases. We are currently conducting a clinical trial to test the efficacy of nanoparticle-mediated delivery of pitavastatin in patients with critical limb ischemia. Dynamic collaborative research is necessary to promote the rapid development and clinical
application of nanoparticle-based therapeutics.

Acknowledgement

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Tokyo, Japan (15K19384 to JK, 25461135 to TM, 22390160 and 25293185 to KE), the Translational Research Network Program from the Ministry of Education, Science, and Culture, Tokyo, Japan (to KE) and Health Science Research Grants (Research on Translational Research and Nanomedicine, Research on Nanomedicine and on Intractable Diseases) from the Ministry of Health, Labor, and Welfare, Tokyo, Japan (to KE).

Conflict of Interest

Dr. Egashira is the inventor of an issued patent on part of the results reported in the present study (Pharmaceutical composition containing statin-encapsulated nanoparticle, WO 2008/026702). Applicants for this patent include Kyushu University (http://imaq.kyushu-u.ac.jp/), KOWA Inc (http://www.kowa.co.jp), and Sentan Medical Inc (http://sentaniryou.co.jp). Sentan Medical Inc is a drug discovery venture company from Kyushu University. Dr. Egashira is a founder of Sentan Medical Inc, possessing stocks, serves as one of Directors of the company, and reports personal fees from the company outside the submitted work. The intellectual property division of Kyushu University is reviewing that Sentan Medical Inc did not play a direct role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript in Dr. Egashira’s Laboratory.

References

1) Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution include Kyusyu University (http://imaq.kyushu-u.ac.jp/), KOWA Inc (http://www.kowa.co.jp), and Sentan Medical Inc (http://sentaniryou.co.jp). Sentan Medical Inc is a drug discovery venture company from Kyushu University. Dr. Egashira is a founder of Sentan Medical Inc, possessing stocks, serves as one of Directors of the company, and reports personal fees from the company outside the submitted work. The intellectual property division of Kyushu University is reviewing that Sentan Medical Inc did not play a direct role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript in Dr. Egashira’s Laboratory.

45: 41-48

