Inflammatory Mediators Across the Spectrum of Ankle-Brachial Index

Demet Ozkaramanli Gur¹, Ozcan Gur², Savas Guzel³, Aydin Akyuz¹, Selami Gurkan², Seref Alpsoy¹, Nisa Simge Gulec⁴ and Fatma Koc³

¹Department of Cardiology, Namik Kemal University Faculty of Medicine, Tekirdag, Turkey
²Department of Cardiovascular Surgery, Namik Kemal University Faculty of Medicine, Tekirdag, Turkey
³Department of Biochemistry, Namik Kemal University Faculty of Medicine, Tekirdag, Turkey
⁴Istanbul University, Cerrahpasa Faculty of Medicine, Istanbul, Turkey

 Aim: Peripheral artery disease (PAD) is a manifestation of atherosclerosis with poor prognosis. It is generally complicated by vascular calcification, which is located either in the intima as patchy infiltrates; or circumferentially in the media, also known as medial arterial calcification (MAC). Obstructive PAD is reflected by low ankle-brachial index (ABI ≤ 0.9), whereas MAC is revealed by high ABI (ABI > 1.4). Considering the increase in cardiovascular mortality at both ends of the ABI spectrum, this study aimed to explore the underlying pathology through cytokines with established prognostic significance; namely pentraxin-3 (PTX3), high sensitivity C-reactive protein (hsCRP), copeptin, soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), NT-proBNP, and neopterin.

 Methods: We categorized 180 patients with previous multivessel coronary artery bypass grafting surgery into three groups based on their ABI measurements; 60 patients with ABI ≤ 0.9, 60 patients with ABI within 0.91 and 1.4 normal ABI, and 60 patients with ABI > 1.4 constituted the “PAD,” “normal,” “MAC” groups, respectively. The circulating levels of the biochemical markers were determined.

 Results: In the PAD group, the cytokine levels with predominantly proatherogenic actions such as PTX3, hsCRP, copeptin, and sTREM-1 were increased and these cytokine levels declined as the ABI increased. In the MAC group, the cytokine concentrations with pleiotropic actions such as NT-proBNP and neopterin increased and; NT-proBNP and neopterin concentrations decreased as ABI decreased. The linear regression analysis revealed that neopterin (β = 0.72), PTX3 (β = −0.32), and copeptin (β = −0.48) were independent predictors of ABI.

 Conclusions: These findings suggest that different inflammatory pathways influence the pathology at the opposing ends of the ABI spectrum. Consequently, we suggest that PTX3, copeptin, and neopterin are promising biomarkers for future research.

 Key words: Peripheral artery disease, Ankle-brachial index, Pentraxin-3, Copeptin, Neopterin

 Introduction

 Peripheral artery disease (PAD) is a distinct manifestation of atherosclerosis, characterized by severely calcified, extensive atherosclerotic involvement of arterial tree. It is generally accompanied by other atherosclerotic manifestations, wherein the prevalence of concomitant coronary artery disease (CAD) is reported between 60% and 90%.

 Vascular calcification, which is a prominent feature of atherosclerosis, settles at different layers of the arterial wall. It may be localized either in the intima
or the media, depending on the underlying pathology. In general, the atherosclerotic process in obstructive PAD causes patchy calcium infiltrates in the intima. Medial arterial calcification (MAC), in contrast, is a circumferential calcification of the arterial media resulting in noncompressible arteries. The clinical expression of two entities depends on the net effect of the predominant pathology; a decreased ankle-brachial index (ABI ≤ 0.9) in predominantly atherosclerotic obstructive PAD but an increased ABI (ABI > 1.4) in predominant MAC. Regardless of the cause, an abnormal ABI is a strong predictor of mortality in CAD.

Experimental studies have provided evidence on the relation of a wide range of cytokines revealing mortality with the cardiovascular diseases. These include the proatherogenic cytokines such as pentraxin-3 (PTX3), high sensitivity C-reactive protein (hsCRP), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1); pleiotropic cytokines like neopterin; and biomarkers of hemodynamic stress such as copeptin and N terminal probrain natriuretic peptide (NT-proBNP). PTX3 and hsCRP are the two most characteristic acute phase proteins from the pentraxin family; sTREM-1 is a recently identified cell surface receptor that propagates the proinflammatory cytokines, all of which are mediated through the nuclear factor kappa beta (NF-κB) signaling, the key inflammatory pathway in the pathogenesis of atherosclerosis (Fig. 1A). Neopterin is a pteridine derivative that transduces signals of cell differentiation, migration, proliferation, and apoptosis thorough Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway (Fig. 1B).

Aim

Considering the increase in cardiovascular mortality at both ends of the ABI spectrum, we hypothesized that the distinct inflammatory features in pathogenesis define the deviations in ABI and prognosis. We, therefore, studied the circulating levels of cytokines with established diagnostic and prognostic significance in patients with CAD across the ABI spectrum. We evaluated PTX3, hsCRP, copeptin, sTREM-1, NT-proBNP, and neopterin concentrations in a patient population with previous coronary artery bypass grafting (CABG) who were stratified by ABI.

Methods

Between June 2016 and July 2017, we prospectively enrolled patients with previous CABG surgery due to multivessel CAD who presented to the outpatient clinic for a routine follow-up visit at our institution. A detailed cardiovascular examination and trans-thoracic echocardiography were performed and the demographic data on cardiovascular risk factors such as hypertension, diabetes, hyperlipidemia, family history of cardiovascular disease, and present smoking habits were recorded for every patient during this visit. ABI was measured in all patients. Fasting blood samples were collected in the morning (9–11 am) following the ABI measurement. Each patient was asked if he or she had any leg discomfort on exertion suggesting intermittent claudication, and the presence of symptoms was recorded accordingly.

The following patient groups were excluded from the study: patients with symptoms of stable or unstable angina pectoris; patients with an acute coronary event within the past 6 months, patients with severe systolic dysfunction with an left ventricular ejection fraction (LVEF) of <50%, severe valvular heart disease, chronic inflammatory disorders, acute infection, known malignancy, chronic liver disease, and those with an estimated glomerular filtration rate <60 mL/min/1.73 m². Patients with a history of carotid atherosclerotic diseases identified in the interview or routine preoperative Duplex ultrasound evaluation were also excluded from the study (Fig. 2; flow diagram).

Of the consecutive patients fulfilling the above criteria, we recruited 60 patients with ABI ≤ 0.9, 60 patients with ABI within 0.91–1.4, and 60 patients with ABI > 1.4 into the “low ABI or PAD,” “normal ABI,” and “high ABI or MAC” groups, respectively. We stopped recruiting patients for a specific group once the target of 60 patients was achieved. The study protocol was approved by the local Ethics committee and written informed consent was obtained from all participants (Registration number: 2015/121/11/04).

ABI Measurements

ABI was measured by Doppler technique using a 8–10 MHz Doppler ultrasound device (Huntleigh Healthcare limited, Wales, UK) by an experienced physician. Following a 15-min rest period in supine position, the brachial and ankle systolic pressures were determined using appropriately sized cuffs placed on the brachial artery and on the ankle above the malleolus. To calculate the ABI of each leg, higher ankle pressure measured on dorsalis pedis and tibialis posterior for each limb was used in the numerator, and higher brachial pressure measured from both arms was used in the denominator.

Using G Power version 3.1 for Mac software, the minimum total sample size of 159 patients provided an effect size of 0.25 with an alpha error of 0.05 and power of 0.80 in three groups.
Fig. 1. Overview of the inflammatory mediators
A: Inflammatory mediators with mainly proatherogenic effects are mediated by interleukin-1(IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) through nuclear factor kappa beta (NF-κB) signaling cascade. B: Inflammatory mediators with pleiotropic effects like cell differentiation, migration, proliferation, and apoptosis are mediated through Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway.
Biochemical Analyses

Fasting blood samples were collected from a vein in the antecubital fossa without venous occlusion. The whole blood samples were placed into specimen tubes containing EDTA and were immediately analyzed by ABX Pentra DX 120 blood counter (ABX-Horiba, Montpellier, France). For the biochemical analyses, samples collected into plain tubes were centrifuged at 3000 rpm for 10 min. Creatinine concentrations were determined by Jaffe method and Roche Cobas 501 analyzer (Roche Diagnostics, Indianapolis, USA). Serum samples were then stored at −86°C until further analyses. Copeptin, neopterin, pentraxin3, hsCRP, NT-proBNP, and sTREM-1 concentrations were determined by enzyme-linked immunosorbent assay (ELISA) method based on the competition principle and microtiter plate separation.

PTX3 kit (Human Pentraxin 3 ELISA kit, SunRed Biotechnology Co. Ltd. Shangai, PCR) revealed the inter- and intra-assay CV% as <10%; and the minimum detectable dose of human PTX3 was 0.051 ng/mL. Copeptin kit (Human CCP ELISA kit, SunRed Biotechnology Co. Ltd. Shangai, PCR) and sTREM-1 kit (Human sTREM-1 ELISA kit, SunRed Biotechnology Co. Ltd. Shangai, PCR) revealed an inter- and intra-assay CV% as <12% and <10%, respectively. The minimum detectable dose of human copeptin was 0.067 ng/mL and that of human sTREM-1 was 3.102 pg/mL. hsCRP kit (C-reactive protein HS ELISA kit, DRG International, Inc. USA) revealed the inter- and intra-assay CV% as <4.5% and <7.5%, respectively; and the minimum detectable dose of hsCRP was 0.1 mg/L. Neopterin (Human neopterin ELISA kit, SunRed Biotechnology Co. Ltd. Shangai, PCR) and NT-proBNP kit (Human NT-proBNP ELISA kit, SunRed Biotechnology Co. Ltd. Shangai, PCR) revealed the inter- and intra-assay CV% as <12% and <10%, respectively. The minimum detectable doses of human neopterin and NT-proBNP were 0.117 nmol/L and 1.117 pg/mL, respectively.

Statistical Analysis

The continuous variables were presented either as mean ± standard deviation or median (min–max); categorical variables were presented as the absolute and relative frequencies (n, %). The variables were tested for the normality of distribution by the Kolmogorov Smirnov test. The three patient groups were compared by ANOVA in normally distributed variables and the Kruskal–Wallis test in abnormally distributed variables. Post hoc analysis in case of significant deviations in ANOVA, was performed using Tukey or Tamhane’s test depending on the homogeneity of variances. Similarly, Dunn’s test was used in the nonparametric pairwise multiple comparisons procedure following the Kruskal–Wallis test. The categorical variables were compared by chi square test. A p value of 0.017 adjusted by the Bonferroni method was used in the pairwise comparisons of categorical vari-
Inflammation Across the Ankle-Brachial Index

Table 1. The comparison of demographic characteristics of the study population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PAD (ABI ≤ 0.9) n=60</th>
<th>Normal ABI n=60</th>
<th>MAC (ABI > 1.4) n=60</th>
<th>p value</th>
<th>p < 0.05</th>
<th>p < 0.01</th>
<th>p < 0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>64.8 ± 10.8</td>
<td>63.0 ± 8.7</td>
<td>64.2 ± 8.9</td>
<td>0.61</td>
<td>0.57</td>
<td>0.85</td>
<td>0.88</td>
</tr>
<tr>
<td>Male Gender, n (%)</td>
<td>50 (83.3%)</td>
<td>50 (83.3%)</td>
<td>53 (88.3%)</td>
<td>0.67</td>
<td>1</td>
<td>1</td>
<td>0.43</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>19 (31.7%)</td>
<td>13 (21.7%)</td>
<td>15 (20%)</td>
<td>0.28</td>
<td>0.23</td>
<td>0.78</td>
<td>0.14</td>
</tr>
<tr>
<td>Family History, n (%)</td>
<td>26 (43.3%)</td>
<td>15 (25%)</td>
<td>26 (43.3%)</td>
<td>0.05</td>
<td>0.03</td>
<td>0.34</td>
<td>0.93</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>34 (56.7%)</td>
<td>26 (43.3%)</td>
<td>27 (45%)</td>
<td>0.28</td>
<td>0.14</td>
<td>0.85</td>
<td>0.20</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>47 (78.3%)</td>
<td>52 (86.7%)</td>
<td>46 (76.7%)</td>
<td>0.33</td>
<td>0.23</td>
<td>0.15</td>
<td>0.82</td>
</tr>
<tr>
<td>Hyperlipidemia, n (%)</td>
<td>41 (68.3%)</td>
<td>48 (80%)</td>
<td>49 (81.7%)</td>
<td>0.17</td>
<td>0.14</td>
<td>0.817</td>
<td>0.09</td>
</tr>
<tr>
<td>ABI</td>
<td>0.71 (0.4-0.9)</td>
<td>1.17 (0.92-1.31)</td>
<td>1.5 (1.41-2.0)</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.86 (0.59-1.2)</td>
<td>0.86 (0.58-1.25)</td>
<td>0.85 (0.5-1.2)</td>
<td>0.72</td>
<td>0.43</td>
<td>0.38</td>
<td>0.92</td>
</tr>
<tr>
<td>eGFR</td>
<td>86 (60-121)</td>
<td>90 (60-117)</td>
<td>87 (62-120)</td>
<td>0.32</td>
<td>0.14</td>
<td>0.45</td>
<td>0.43</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>64 (50-67)</td>
<td>65 (60-69)</td>
<td>64 (50-68)</td>
<td>0.63</td>
<td>0.44</td>
<td>0.38</td>
<td>0.91</td>
</tr>
<tr>
<td>WBC, x10^3</td>
<td>6.7 (4.8-10.4)</td>
<td>6.9 (4.4-9.1)</td>
<td>7.3 (4.4-9.5)</td>
<td>0.98</td>
<td>0.88</td>
<td>0.87</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Medications (%)

- Beta-blockers
 - PAD: 34 (56.7%)
 - Normal ABI: 47 (78.3%)
 - MAC: 42 (70%)
- ASA
 - PAD: 31 (51.7%)
 - Normal ABI: 13 (21.7%)
 - MAC: 17 (28.3%)
- Clopidogrel
 - PAD: 37 (61.7%)
 - Normal ABI: 46 (76.7%)
 - MAC: 45 (75%)
- Statin
 - PAD: 33 (55%)
 - Normal ABI: 43 (71.7%)
 - MAC: 44 (73.3%)
- ACEi
 - PAD: 12 (20%)
 - Normal ABI: 14 (23.3%)
 - MAC: 16 (26.7%)
- ARB
 - PAD: 15 (25%)
 - Normal ABI: 15 (25%)
 - MAC: 14 (23.3%)
- Insulin
 - PAD: 13 (21.7%)
 - Normal ABI: 4 (6.7%)
 - MAC: 7 (11.7%)
- Metformin
 - PAD: 9 (15%)
 - Normal ABI: 12 (20%)
 - MAC: 9 (15%)
- OAD
 - PAD: 6 (10%)
 - Normal ABI: 5 (8.3%)
 - MAC: 3 (5%)
- Symptom
 - PAD: 35 (58.3%)
 - Normal ABI: 11 (18.3%)
 - MAC: 13 (21.7%)

The categorical variables are compared by chi square, continuous variables are compared by ANOVA or Kruskal–Wallis test.

- p < 0.05: low ABI vs. normal ABI, p < 0.017 as the level of significance
- p < 0.01: low ABI vs. high ABI, p < 0.017 as the level of significance
- p < 0.001: low ABI vs. high ABI, p < 0.017 as the level of significance

Results

A total of 180 patients with prior CABG and mean age of 63.8 ± 9.4 years (85% male) were enrolled into the study. The demographic characteristics of the patients stratified by ABI are presented in Table 1. The frequency of the cardiovascular risk factors was similar within the study groups except for the family history of CAD, which was less common in normal ABI group compared to low and high ABI groups (25% vs. 43.3% vs. 43.3%; p = 0.05). Similarly, no significant difference was observed among the study groups in terms of serum creatinine, eGFR, LVEF, and WBC counts. Use of most of the medications was similar within the study groups except for those of beta blocker, acetylsalicylic acid, and insulin. Patients with low ABI were less frequently on beta-blockers (56.7% vs. 78.3% vs. 70%; p = 0.04) and more frequently on...
acetylsalicylic acid (51.7% vs. 21.7 vs. 28.3%) and insulin therapy (21.7% vs. 6.7% vs. 11.7%; p = 0.048) when compared to the normal and high ABI patients. Table 2 and Fig. 3 indicate the circulating concentrations of the biochemical markers with respect to the ABI groups.

The highest levels of PTX3 were in patients with PAD (4.6 [0.19–12.5] ng/mL) followed by those with normal ABI (3.2 [0.2–12.6] ng/mL) and with MAC (2.6 [1.63–6.7] ng/mL, overall p < 0.001). The short pentraxin, hsCRP, was higher in the PAD group when compared to the normal ABI and MAC groups (5.2 [0.5–10.5] in PAD vs. 3.8 [0.1–10.5] in normal ABI vs. 2.9 [0.3–10.2] mg/L in MAC, overall p < 0.001). The difference between the normal and MAC groups, however, was not statistically significant (p = 0.609). Copeptin levels in the PAD patients were 4.0 [0.9–12.6] ng/mL versus 3.0 [0.03–12.6] ng/mL in those with normal ABI versus 1.9 [0.9–9.6] ng/mL in patients with MAC (overall p < 0.001). For sTREM-1, another inflammatory cytokine of atherosclerosis, levels were highest in patients with PAD and gradually decreased with increasing ABI (146.9 [1–343.2] in PAD, 135.7 [1.01–584.6] in normal ABI, and 105.3 [20.7–578.9] pg/mL in MAC); among these, only the difference between PAD and MAC groups was statistically significant (p = 0.037). NT-proBNP concentrations were higher in the MAC patients (317.8 [128.7–902.1] pg/mL) when compared to the normal ABI patients (257.9 [45.1–1046.9] pg/mL) or PAD patients (232.0 [115.9–1038.3] pg/mL). The difference between the normal and PAD patients did not reach statistical significance. The neopterin levels were higher in MAC and normal ABI groups than the PAD group (9.4 [0.3–20.9] in MAC, 9.1 [0.3–20.9] in normal ABI, and 5.0 [0.9–20.9] nmol/L in PAD).

Correlation analysis was performed to determine the strength of correlations between ABI and biochemical markers (Table 3). The biochemical markers that efficiently correlated with ABI were neopterin (r = 0.40, p < 0.001) and PTX3 (r = −0.40, p < 0.001). Notably, significant correlations of proatherogenic cytokine PTX3 with copeptin (r = 0.65, p < 0.001), sTREM-1 (r = 0.49, p < 0.001), and hsCRP (r = 0.22, p < 0.001), were observed.

The linear regression analysis revealed that PTX3 (β = −0.32, p = 0.005), copeptin (β = −0.48, p < 0.001), and neopterin (β = 0.72, p < 0.001) were independent predictors of ABI; in which the increase in neopterin was associated with high ABI, whereas increase in PTX3 and copeptin was associated with low ABI (Table 4).

Discussion

In the present study, the study population comprised considerably homogenous group of patients with advanced coronary atherosclerosis stratified by ABI. The deviations in concentrations of the biomarkers were therefore observed over CAD, representing a patient population close to the clinical practice. In this context, we majorly revealed the convergence of proatherogenic mediators such as PTX3, hsCRP, sTREM-1, and copeptin on low ABI; and pleiotropic/hemodynamic mediators like NT-proBNP and neopterin on higher ABI values. Our findings provided evidence that obstructive PAD and MAC are entities with distinct cytokine pattern wherein; (1) an increase in PTX3 and copeptin was associated with high ABI; and (2) an increase in neopterin was independently related to low ABI.

In the present study, the results indicated that the levels of inflammatory cytokines associated with NF-κB signaling; namely PTX3, hsCRP, copeptin, and sTREM-1, were elevated in patients with PAD and declined as the ABI increased. The activation of this pathway, consequently, induces transcription of numerous proatherogenic mediators (Fig. 1A).

Table 2. The comparison of biochemical markers among the study groups

<table>
<thead>
<tr>
<th>Biomarkers</th>
<th>PAD (ABI ≤ 0.9) n=60</th>
<th>Normal ABI n=60</th>
<th>MAC (ABI > 1.4) n=60</th>
<th>p</th>
<th>p^a</th>
<th>p^b</th>
<th>p^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTX3, ng/mL</td>
<td>4.6 (0.19-12.5)</td>
<td>3.2 (0.2-12.6)</td>
<td>2.6 (1.63-6.7)</td>
<td><0.001</td>
<td>0.002</td>
<td>0.03</td>
<td><0.001</td>
</tr>
<tr>
<td>hsCRP, mg/L</td>
<td>5.2 (0.5-10.5)</td>
<td>3.8 (0.1-10.5)</td>
<td>2.9 (0.3-10.2)</td>
<td><0.001</td>
<td>0.024</td>
<td>0.609</td>
<td><0.001</td>
</tr>
<tr>
<td>Copeptin, ng/mL</td>
<td>4.0 (0.9-12.6)</td>
<td>3.0 (0.03-12.6)</td>
<td>1.9 (0.9-9.6)</td>
<td><0.001</td>
<td>0.69</td>
<td>0.004</td>
<td><0.001</td>
</tr>
<tr>
<td>sTREM-1, pg/mL</td>
<td>146.9 (1.0-434.2)</td>
<td>135.7 (1.01-584.6)</td>
<td>105.3 (20.7-578.9)</td>
<td>0.037</td>
<td>1.0</td>
<td>0.226</td>
<td>0.037</td>
</tr>
<tr>
<td>NT-ProBNP, pg/mL</td>
<td>232.0 (115.9-1038.3)</td>
<td>257.9 (45.1-1046.9)</td>
<td>317.8 (128.7-902.1)</td>
<td>0.004</td>
<td>1.0</td>
<td>0.045</td>
<td>0.004</td>
</tr>
<tr>
<td>Neopterin, nmol/L</td>
<td>5.0 (0.9-20.9)</td>
<td>9.1 (0.3-20.9)</td>
<td>9.4 (0.3-20.9)</td>
<td><0.001</td>
<td><0.001</td>
<td>0.197</td>
<td><0.001</td>
</tr>
</tbody>
</table>

PTX3: pentraxin 3, hsCRP: high sensitivity C-reactive protein, sTREM-1: soluble triggering receptor expressed on myeloid cells-1, NT-proBNP: N terminal probrain natriuretic peptide, PAD: peripheral artery disease, MAC: medial arterial calcification. The groups are compared using Kruskal–Wallis test; the post hoc analyses of pairwise comparisons were performed using Dunn’s test.
Fig. 3. Comparison of biochemical markers among the study groups

Red interpolation lines represent statistically significant difference; dotted lines represent differences without statistical significance.

CI: Confidence interval, PTX3: pentraxin 3, hsCRP: high sensitivity C-reactive protein, sTREM-1: soluble triggering receptor expressed on myeloid cells-1, NT-proBNP: N-terminal pro-brain natriuretic peptide.
that PTX3 could predict endothelial dysfunction and PAD more accurately than CRP. In accordance with these reports, the correlation of PTX3 with ABI, in our study, was stronger than that of hsCRP. Moreover, PTX3 was an independent predictor of ABI even PTX3 and hsCRP are the prototypes of acute phase proteins: PTX3 is the long and hsCRP is the short form of soluble pattern recognition molecules or pentraxins. The association of pentraxins with CAD is well established. More recent studies have reported

Table 3. Spearman correlations among the ABI and biochemical markers

<table>
<thead>
<tr>
<th></th>
<th>ABI</th>
<th>PTX3</th>
<th>Copeptin</th>
<th>hsCRP</th>
<th>sTREM</th>
<th>Neopterin</th>
<th>NT-ProBNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>1</td>
<td>-0.40**</td>
<td>-0.29**</td>
<td>-0.23**</td>
<td>-0.18**</td>
<td>0.40**</td>
<td>0.21**</td>
</tr>
<tr>
<td>PTX3</td>
<td>-0.40**</td>
<td>1</td>
<td>0.65**</td>
<td>0.22**</td>
<td>0.49**</td>
<td>NS</td>
<td>0.17*</td>
</tr>
<tr>
<td>Copeptin</td>
<td>-0.29**</td>
<td>0.65**</td>
<td>1</td>
<td>NS</td>
<td>0.34**</td>
<td>0.25**</td>
<td>NS</td>
</tr>
<tr>
<td>hsCRP</td>
<td>-0.23**</td>
<td>0.22**</td>
<td>NS</td>
<td>1</td>
<td>NS</td>
<td>-0.26**</td>
<td>NS</td>
</tr>
<tr>
<td>sTREM</td>
<td>-0.18*</td>
<td>0.49**</td>
<td>0.34**</td>
<td>NS</td>
<td>1</td>
<td>NS</td>
<td>0.24**</td>
</tr>
<tr>
<td>Neopterin</td>
<td>0.40**</td>
<td>NS</td>
<td>0.25**</td>
<td>-0.26**</td>
<td>NS</td>
<td>1</td>
<td>0.56**</td>
</tr>
<tr>
<td>NT-ProBNP</td>
<td>0.21**</td>
<td>0.17*</td>
<td>0.21**</td>
<td>NS</td>
<td>0.24**</td>
<td>0.56**</td>
<td>1</td>
</tr>
</tbody>
</table>

PTX3: pentraxin 3, hsCRP: high sensitivity C-reactive protein, sTREM-1: soluble triggering receptor expressed on myeloid cells-1, NT-proBNP: N terminal probrain natriuretic peptide
NS: nonsignificant
** indicates r values with p<0.01
* indicates r values with p<0.05

Table 4. Univariable and multivariable models for the predictors of ABI

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>95%CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>-0.14</td>
<td>-0.24</td>
<td>0.006</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>-0.096</td>
<td>-0.17</td>
<td>0.036</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>0.15</td>
<td>0.008</td>
<td>0.255</td>
</tr>
<tr>
<td>ASA</td>
<td>-0.22</td>
<td>-0.27</td>
<td>-0.057</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>0.13</td>
<td>-0.008</td>
<td>0.225</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>0.13</td>
<td>-0.009</td>
<td>0.216</td>
</tr>
<tr>
<td>Statin</td>
<td>0.14</td>
<td>-0.004</td>
<td>0.218</td>
</tr>
<tr>
<td>PTX3</td>
<td>-0.30</td>
<td>-0.063</td>
<td>-0.023</td>
</tr>
<tr>
<td>hs-CRP</td>
<td>-0.24</td>
<td>-0.045</td>
<td>-0.012</td>
</tr>
<tr>
<td>Copeptin</td>
<td>-0.23</td>
<td>-0.048</td>
<td>-0.011</td>
</tr>
<tr>
<td>sTREM-1</td>
<td>-0.1</td>
<td>-0.001</td>
<td>0.00</td>
</tr>
<tr>
<td>NT-ProBNP</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Neopterin</td>
<td>0.30</td>
<td>0.012</td>
<td>0.032</td>
</tr>
<tr>
<td>eGFR</td>
<td>0.018</td>
<td>-0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>LVEF</td>
<td>0.072</td>
<td>-0.007</td>
<td>0.018</td>
</tr>
<tr>
<td>WBC</td>
<td>0.021</td>
<td>-0.049</td>
<td>0.034</td>
</tr>
</tbody>
</table>

ASA: acetyl salicylic acid, PTX3: pentraxin 3, hsCRP: high sensitivity C-reactive protein, sTREM-1: soluble triggering receptor expressed on myeloid cells-1, NT-proBNP: N terminal probrain natriuretic peptide, eGFR: estimated glomerular filtration rate, LVEF: left ventricular ejection fraction, WBC: white blood cell count, eGFR, LVEF, WBC count, and the variables in the univariable model are used as possible confounders to construct multivariable model by stepwise method.
when adjusted for hsCRP and WBC count in multivariate analyses. These findings suggest that PTX3 is a better indicator for obstructive PAD than hsCRP. Copeptin, the C terminal fragment of proarginine vasopressin, is a stress hormone released in response to various stimuli. The stimulation of hypothalamic-pituitary axis by several inflammatory mediators such as TNF-α, IL-1, and IL-6 is known to increase the copeptin levels. Herein, we demonstrated that copeptin was negatively correlated with ABI and was a strong determinant of obstructive PAD. To the best of our knowledge, no such association of copeptin with ABI was reported in the literature to date.

sTREM-1 is a recently identified receptor on granulocyte and macrophages whose activation triggers the synthesis of proinflammatory cytokines like TNF-α. Although the elevated plasma levels were reported in infectious diseases, its involvement in atherosclerosis was recently revealed by Rao et al. who demonstrated the expression of sTREM-1 on carotid plaques. As discussed in this study, it represents the activation of proatherogenic cycle and acts in the same manner as PTX3 and copeptin; adding fuel to fire. The significant positive correlations between sTREM-1 and PTX3 (r=49) and copeptin (r=0.34) support the basic science studies.

MAC, in contrast, is considered as a nonatheromatous lesion. Deposition of calcium at the extracellular matrix of vascular media is an active process mediated by vascular smooth muscle cells; however, data on the underlying pathophysiological mechanism is scarce. MAC clinically presents as calcified arteries usually apparent on plain X-ray. It is a prevalent entity in PAD, evidenced by O’Neill et al., who reported MAC in 72% of the histological examinations of the amputated limbs.

In the present analysis, the proatherogenic cytokines were decreased in patients with MAC; however, cytokines with pleiotropic effects like neopterin and NT-proBNP were increased. Moreover, neopterin was found to be an independent determinant of increasing ABI. Low grade systemic inflammation is the hallmark of MAC in which the relatively low plasma expression of proatherogenic cytokines was due. Neopterin is produced by the activated macrophages upon stimulation by interferon δ (INF δ). Unlike PTX3, hsCRP, copeptin, and sTREM-1, INF δ mediated inflammation inhibits IL-1 receptor, inactivating the downstream signaling cascade. Meanwhile, it utilizes the JAK-STAT signaling pathway instead of NF-KB pathway. INF δ was also revealed to have contrasting roles with IL-6. It is therefore obvious to have neopterin concentrations in the opposite direction to those of the proatherogenic cytokines. In the clinical CAD studies, neopterin concentrations were associated with plaque vulnerability and mortality, but not with the anatomical extent of coronary lesions. These concentrations are considered as an activation marker of macrophages with important prognostic information. Notably, several studies suggest an association between neopterin and vascular calcification. Macrophages activated by INF-δ, express an enzyme that converts vitamin D into calcitriol; which in turn stimulates dystrophic calcification. Similarly, Naito et al. have reported increased serum neopterin levels in patients with calcific aortic valve stenosis. Hence, high neopterin levels in MAC may be a marker of the ongoing medial calcification. In the present study, although a positive linear relationship with ABI and neopterin levels was evident; we could not demonstrate a significant increase in the neopterin levels, when the normal and high ABI were compared (Table 2). This may be due to the PAD patients in high ABI group who were masked by severely calcified, noncompressible arteries. This finding suggests a possible association not only with high ABI and increased mortality but also with vascular calcification through neopterin. This is the first study to demonstrate the influence of neopterin on ABI.

In our study, NT-proBNP, which is an established biomarker of cardiovascular disease, was decreased in the PAD group, and increased in the MAC group. Previous studies had also reported that NT-proBNP levels were 2.5-fold higher in the patients with MAC than those with PAD, which was explained by the increased hemodynamic stress and arterial stiffness. Although we did not use an objective surrogate of arterial stiffness such as pulse wave velocity (PWV) to provide an evidence for the increased stiffness in the present study, data suggest that adverse hemodynamic effect of incompressible arteries was the reason of increased NT-proBNP. In the previous studies of ankle-brachial PWV, a clear positive association of NT-proBNP and PWV was manifested. Decreased levels of NT-proBNP in PAD are intriguing. Published data refers to the antiatherogenic, pro-regenerative, and pleiotropic effects of natriuretic peptides. We, therefore, suppose that loss of these effects characterizes the cytokine pattern in PAD.

There are several limitations of this study. First, it has a cross-sectional design, limiting one to draw conclusions on the causality of observed differences in the cytokine patterns. Second, involvement of CABG patients with advanced atherosclerosis can complicate the interpretation of results. Having CABG population, however, has also provided a homogenous study group limiting the uncontrolled involvement of coronary and carotid atherosclerosis into any specific sub-
set. Third, the potential overlap of obstructive PAD and MAC is another limitation. Nevertheless, there is no recommended diagnostic method for setting the MAC diagnosis other than ABI measurement. It is, therefore, important to observe this distinct pattern of cytokines, despite the possible involvement of obstructive PAD patients into the high ABI group. Fourth, lack of PWV analysis as a surrogate of hemodynamic stress can be considered as a limitation; however, PWV can be underestimated when ABI < 0.9.

In conclusion, we demonstrated a remarkable increase in the proatherogenic cytokines such as PTX3, hsCRP, copeptin, and sTREM-1 concentrations in patients with low ABI, wherein increase in the PTX3 and copeptin was the independent predictor of obstructive PAD, expressed by low ABI. The concentrations of pleiotropic mediators like neopterin and NT-proBNP elevated with increasing ABI; thus, neopterin was the determinant of increasing ABI. These results suggest the influence of distinct inflammatory pathways at the opposing ends of ABI spectrum. This study has implications to clinical practice since the identified cytokine patterns may guide future research for diagnosis, prevention, or treatment of different forms of vascular disease such as PAD and MAC.

Acknowledgements

None.

Funding

This study was funded by the Scientific Research Projects of Namik Kemal University (NKUBAP.02. GA.16.043).

Conflicts of Interest

The authors declare that there is no conflict of interest.

References

3) Cirqui MH. Peripheral arterial disease-epidemiological aspects. Vasc Med, 2001; 6: 3-7
4) Welten GM, Schouten O, Hoeks SE, Chonchol M, Vida-kovic R, van Domburg RT, Bax JJ, van Sambeek MR, Poldermans D. Long-term prognosis of patients with peripheral arterial disease: a comparison in patients with coronary artery disease. J Am Coll Cardiol, 2008; 51: 1588-1596
8) Ho CH and Shanahan CM. Medial arterial calcification: An overlooked player in peripheral arterial disease. Atherosclerosis Vasc Biol, 2016; 36: 1475-1482
14) Bouchon A, Dietrich J and Colonna M. Cutting edge inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol, 2000; 16410: 4991-4995
19) Rao VH, Rai V, Syoupa S, Subramanian S, Agrawal DK.
Tumor necrosis factor-α regulates triggering receptor expressed on myeloid cells-1 dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis. Atherosclerosis, 2016; 248: 160-169