Sitosterolemia, Hypercholesterolemia, and Coronary Artery Disease

Hayato Tada¹, Atsushi Nohara¹, Akihiro Inazu², Nagahiko Sakuma³, Hiroshi Mabuchi¹ and Masa-aki Kawashiri¹

¹Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
²Department of Laboratory Science, Molecular Biochemistry and Molecular Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
³Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

Sitosterolemia is a rare inherited disease characterized by increased levels of plant sterols, such as sitosterol. The cause of this disease is ATP-binding cassette (ABC) subfamily G member 5 or member 8 (ABCG5 or ABCG8, respectively) gene mutations. Recent advances in genetics have revealed that the prevalence of subjects with deleterious mutations in ABCG5 and/or ABCG8 genes could be more than 1 in ~200,000 individuals among the general population. Furthermore, accumulated evidence, including infantile cases exhibiting progression/regression of systemic xanthomas associated with LDL cholesterol levels, have shown that the elevation of LDL cholesterol seems to be the major cause of development of atherosclerosis and not the elevation of sitosterol. Regarding therapies, LDL apheresis, as well as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, could be useful for sitosterolemia, in addition to ezetimibe and/or colestimide. In this study, we provide the current understanding and future perspectives of sitosterolemia, which is currently considered an extremely rare disorder but is expected to be much more prevalent in clinical settings.

Key words: Sitosterolemia, ABCG5, ABCG8, Familial hypercholesterolemia

Introduction

Familial hypercholesterolemia (FH) is a common inherited disorder of plasma lipoprotein metabolism and is characterized by an elevated level of LDL cholesterol, tendon xanthomas, and premature coronary artery disease⁴. The monogenic causes of FH involve gene mutations such as LDL receptor, apolipoprotein B-100, and proprotein convertase subtilisin/kexin type 9 (PCSK9)². On the other hand, sitosterolemia (OMIM #210250) is a rare, inherited, autosomal recessive disorder of lipid metabolism characterized by increased absorption and decreased biliary excretion of plant sterols and cholesterol, thus resulting in prominently elevated serum concentrations of plant sterols, such as sitosterol and campesterol⁵. Subjects suffering from sitosterolemia primarily present with tendinous and tuberous xanthomas and premature coronary atherosclerosis, such as FH⁴⁻⁷. LDL cholesterol levels are more variable in sitosterolemia than in other genetic hyperlipidemias but can be extremely elevated in some patients, particularly in infants; the reason for this phenomenon still remains unclear⁸. This disease is caused by mutations in either ATP-binding cassette (ABC) subfamily G member 5 or member 8 (ABCG5 and ABCG8, respectively). In this paper, we provide the current understanding and future perspectives of sitosterolemia, which is currently considered an extremely rare disorder but is expected to be much more prevalent in clinical settings.

Epidemiology

Sitosterolemia is now considered an extremely rare disorder. Approximately ~100 patients have been reported to have sitosterolemia thus far. However, according to The Exome Aggregation Consortium (ExAC) exome browser, 1 in ~220 individuals have loss of function (LOF) mutations in ABCG5 or ABCG8 genes⁸; therefore, the rough estimation of the number of pa-
sitosterolemia patients. Accordingly, ABCG8 and ABCG5 gene mutations should be examined if sitosterolemia is suspected regardless of ethnicity. Furthermore, the ABCG5 and ABCG8 proteins form heterodimers and act in coordination as a complex. We recently observed a sitosterolemia case caused by combinations of ABCG5 and ABCG8 gene mutations (data not shown). Moreover, we recently published a paper regarding the prevalence of oligogenic FH with deleterious mutations in FH genes and the ABCG5/8 genes. We found that additional mutation(s) in the ABCG5/8 genes significantly affected LDL cholesterol level and coronary artery disease prevalence. These findings and a recent study revealed that ABCG5/8 genetic mutations significantly affected LDL cholesterol levels in the general population; this information supports the notion that there are many heterozygous carriers of this disease among patients with hypercholesterolemia.

ABCG5 and ABCG8 Mutations

Most sitosterolemic cases in Asians have been shown to be caused by mutations in the ABCG5 gene, whereas those in Caucasian are believed to be caused by mutations in the ABCG8 gene. However, recent studies, including our previous study, have revealed the causative mutations in the ABCG8 gene from Asian sitosterolemic patients. Accordingly, ABCG8 and ABCG5 gene mutations should be examined if sitosterolemia is suspected regardless of ethnicity. Furthermore, the ABCG5 and ABCG8 proteins form heterodimers and act in coordination as a complex. We recently observed a sitosterolemia case caused by combinations of ABCG5 and ABCG8 gene mutations (data not shown). Moreover, we recently published a paper regarding the prevalence of oligogenic FH with deleterious mutations in FH genes and the ABCG5/8 genes. We found that additional mutation(s) in the ABCG5/8 genes significantly affected LDL cholesterol level and coronary artery disease prevalence. These findings and a recent study revealed that ABCG5/8 genetic mutations significantly affected LDL cholesterol levels in the general population; this information supports the notion that there are many heterozygous carriers of this disease among patients with hypercholesterolemia.

Clinical Manifestations

The variations in phenotypic severities of this
With their dietary habits are quite important for the prevention of atherosclerosis in this disease.

Heterozygous Mutation Carriers

Although sitosterolemia is now considered a “recessive” disorder, recent studies have revealed the fact that heterozygous mutation carriers also exhibit milder manifestations18, 19). We previously showed that a portion of hypercholesterolemia other than FH could be explained by a deleterious mutation in the \textit{ABCG8} gene20). We also showed that single deleterious mutations affected LDL cholesterol levels by 18 mg/dL among individuals exhibiting severe hyper LDL cholesterol12). Another group showed that a portion of hypercholesterolemia other than FH could be explained by a deleterious mutation in \textit{ABCG5} or \textit{ABCG8} gene14). These results collectively suggested that heterozygous mutation carriers in the \textit{ABCG5/8} genes could be one of the major genetic causes of hyperdisease have been reported. We previously described a case with sitosterolemia in a 26-year old lady exhibiting premature myocardial infarction7). Other studies have showed sitosterolemia cases without any apparent atherosclerosis14). Regarding this information, several infantile cases, including ours, have exhibited severe hyper LDL cholesterol during breastfeeding4, 10). Moreover, LDL cholesterol levels in adult sitosterolemic patients are more variable than that in other genetic hyperlipidemias15). These facts suggest that sitosterolemic patients are vulnerable to diet-induced hyperlipidemia. Thus, we speculated that LDL cholesterol associated with dietary habits significantly affects their clinical manifestations and conducted a single arm, nonrandomized, open-label, uncontrolled trial to determine if postprandial remnant-like particle (RLP) fractions were elevated in this disease16). We found that postprandial RLP lipoproteins were significantly impaired compared to heterozygous FH17). Accordingly, we believe that RLP and LDL cholesterol associated with their dietary habits are quite important for the prevention of atherosclerosis in this disease.

Fig. 2. Mutations and polymorphisms in the \textit{ABCG5} and \textit{ABCG8} genes

Mutations are illustrated as blue. Polymorphisms are illustrated as red.

Upper panel: Mutations and polymorphisms in the \textit{ABCG5} gene.

Lower panel: Mutations and polymorphisms in the \textit{ABCG8} gene.
terol and LDL cholesterol levels. In contrast to LDL cholesterol, the pathogenicity of sitosterol on the development of atherosclerosis still remains unclear. Regarding this point, only a few studies have systematically investigated this issue, and serum sitosterol level itself does not seem to be the causal factor\(^{22, 23}\). Further studies with larger sample sizes are needed to elucidate this issue. On the other hand, a recent clinical trial has shown that serum sitosterol level could be a good biomarker of ezetimibe efficacy\(^{24}\). Serum sitosterol has been shown as a surrogate marker of cholesterol absorption\(^{25}\). This result may reflect the fact that ezetimibe could be more effective in patients with increased cholesterol absorption due to primary or secondary causes. Accordingly, serum sitosterol measurements could be used not only for the clinical diagnosis of sitosterolemia but also for the prediction of ezetimibe efficacy.

Pseudo Familial Hypercholesterolemia

Sitosterolemia has been described as “Pseudo FH,” particularly infant cases, on the basis of phenotype, such as hyper LDL cholesterol, as well as tendon xanthomas\(^{21}\) (Fig. 3). Previous studies have shown multiple infant cases of sitosterolemia with extreme hyper LDL cholesterol associated with breastfeeding\(^{4, 10}\). Interestingly, weaning can reduce their LDL cholesterol level substantially but will not affect their sitosterol level (Fig. 4). The detailed mechanism of this extreme situation is still unclear; however, the disturbance of postprandial remnant lipoprotein fractions seems to be one of the factors that contribute to this situation\(^{17}\).

Sitosterol or Cholesterol?

Sitosterolemia is known to show elevated sitos-
cholestimide have been described as appropriate therapies\(^9\). It is true that ezetimibe and colestimide are effective in reducing cholesterol and sitosterol, and HMG-CoA reductase inhibitors (statins) are effective in reducing LDL cholesterol in sitosterolemic patients\(^28, 30\). In addition to those established approaches, we experienced a sitosterolemia case wherein PCSK9 inhibition had great effect for reducing LDL cholesterol (data not shown). As stated above, the efficacy of reducing sitosterol levels for the prevention of atherosclerosis is still controversial. PCSK9 inhibitors and statins with robust evidence for the reduction of atherosclerotic events could also be considered for patients with sitosterolemia\(^31\). For patients with advanced atherosclerotic regions, LDL apheresis could be considered if applicable\(^6\).

Conclusions and Perspectives

It is true that sitosterolemia as a monogenic disorder is rather rare; however, the prevalence of this disorder is currently underestimated. Furthermore, relatives of sitosterolemia patients or those with heterozygous mutation carriers usually exhibit elevated

Clinical Phenotypes of Sitosterolemia Other Than Atherosclerotic Disease

It has been shown that some patients with sitosterolemia suffer from hematologic abnormalities, including abnormal erythrocyte shape, thrombocytopenia, and arthritis\(^{26, 27}\). This phenomenon is now being investigated because of the accumulation of elevated plant sterols. However, we previously showed a unique case complicated by arthritis due to a combination disease of sitosterolemia and familial Mediterranean fever, whose typical manifestation includes arthritis\(^5\). This case shows a recessive disorder that is usually associated with consanguineous marriage; hence, another recessive disorder could occur with these other phenotypes. Comprehensive genetic analysis for such cases should be quite useful for uncovering the potential cause of those situations.

Managements for Sitosterolemia

Several medications for reducing LDL cholesterol and sitosterol have been introduced for sitosterolemic patients\(^{28, 29}\). Among these medications, ezetimibe and cholestimide have been described as appropriate therapies\(^9\). It is true that ezetimibe and colestimide are effective in reducing cholesterol and sitosterol, and HMG-CoA reductase inhibitors (statins) are effective in reducing LDL cholesterol in sitosterolemic patients\(^{28, 30}\). In addition to those established approaches, we experienced a sitosterolemia case wherein PCSK9 inhibition had great effect for reducing LDL cholesterol (data not shown). As stated above, the efficacy of reducing sitosterol levels for the prevention of atherosclerosis is still controversial. PCSK9 inhibitors and statins with robust evidence for the reduction of atherosclerotic events could also be considered for patients with sitosterolemia\(^31\). For patients with advanced atherosclerotic regions, LDL apheresis could be considered if applicable\(^6\).
sitosterol and LDL cholesterol levels. Moreover, such mutations affect the phenotype of FH. Considering the potential mechanism of elevation of such sterols in this situation, including heterozygous mutation carriers, ezetimibe should be the best treatment; however, statins and PCSK9 inhibitors could be considered if the LDL cholesterol level is very high. The evidence suggests that LDL cholesterol rather than sitosterol should be treated despite the name of this disease. The accurate prevalence data of this disease and clinical data from clinical diagnoses supported by health insurance and comprehensive genetic analyses are needed to further elucidate the clinical importance of this disease.

Acknowledgments and Notice of Grant Support

None

Conflicts of Interest

None

References

Advance Publication Journal of Atherosclerosis and Thrombosis
Accepted for publication: May 24, 2018 Published online: July 20, 2018

