多出力型重み付きTSファジー推論法とその糖尿病診断データの判別分析への応用

水本 雅晴1, 杨 涛2

1) 大阪電気通信大学・情報通信工学部・情報工学科
2) マイコム㈱

要約：ファジー制御やファジー意思決定などによく使用されているファジー推論法として“簡略化推論法”と最も汎用性のある“TS(Takagi-Sugeno)ファジー推論法”が知られている。本論文では、TSファジー推論法の規則に重み関数を付加した「重み付きTSファジー推論法」を提案し、より表現豊富なファジー推論法となることを示す。さらに、このファジー推論法に対して、ニューロ・ファジー手法を適用して、糖尿病診断データの判別分析システムの構築を行なう。これまでにも、1出力型のファジー推論法に対してニューロ・ファジー手法による糖尿病判別システムの構築を行ってきたが、本論文では、簡略化推論法、TSファジー推論法、および重み付きTSファジー推論法を多出力型にした場合のニューロ・ファジー手法を提案し、糖尿病データの判別システムの構築を行い、比較・検討を行なった結果、多出力型及び1出力型の場合とも重み付きTSファジー推論法が最良の判別結果を示した。

キーワード：簡略化推論法、TSファジー推論法、重み付きTSファジー推論法
多出力型ファジー推論法、ファジー判別分析、糖尿病診断

Weighted Multi-Output Type TS Fuzzy Reasoning Method and Its Application to Fuzzy Discriminant Analysis for Diabetes Diagnostic Data

Masaharu MIZUMOTO1, Tao YANG2

1) Department of Information and Computer Sciences, Osaka Electro-Communication University
2) Mycom Inc.

Abstract: As an extension of TS (Takagi-Sugeno) fuzzy reasoning method, "weighted TS fuzzy reasoning method" is proposed in which the consequent part of the fuzzy rule consists of output function with weighting function, and its properties are discussed with the well-known simplified fuzzy reasoning method and TS fuzzy reasoning method. This paper also shows learning algorithms for the weighted TS fuzzy reasoning method with multiple-outputs by using the steepest decent method, and compares learning results by the simplified reasoning method and TS fuzzy reasoning method by applying to diabetes diagnostic data, and the proposed method obtains the best diagnostic results.

Keywords: fuzzy reasoning method, TS fuzzy reasoning method, simplified fuzzy reasoning method, weighted TS fuzzy reasoning method, learning algorithm, fuzzy discriminant analysis

Masaharu MIZUMOTO
Neyagawa, Osaka, 572-8530 Japan
Phone: +81-72-824-1131, Fax: +81-72-824-0014, E-mail: mizumoto42@yahoo.co.jp
1. はじめに

ファジィ制御やファジーエキスパートなどの分野において、ファジィ理論の自動生成あるいは微調整を行う方法として、ガウス基底型メンバーシップ関数を用いた最急降下法によるニューロ・ファジィ学習アルゴリズムがよく知られている。そのファジィ規則に対しては、“簡略化推論法”と最も汎用性のある“TS (Takagi-Sugeno) ファジィ推論法”がよく使用されているが、本論文では、TSファジィ推論法の規則に重み関数を付加した「重み付きTSファジィ推論法」を提案し、より表現豊富なファジィ推論法となることを示す。さらに、このファジィ推論法においてニューロ・ファジィ手法を適用して、糖尿病診断データの判別分析システムの構築を行う。[2]では、1出力型のファジィ推論法に対して、ガウス型メンバーシップ関数からなるニューロ・ファジィ手法を用いて糖尿病判別システムの構築を行ったが、本論文では、多出力型のファジィ推論法に対して、ニューロ・ファジィ手法を適用し、糖尿病診断データの判別システムの構築を行った。この場合、簡略化推論法、TSファジィ推論法を多出力にした場合のニューロ・ファジィ学習法の下での判別結果の比較・検討を行った。

2. TSファジィ推論法

まず、TSファジィ推論法[1]のあらましを述べておく。ファジィ理論の後件部を関数にしたのがTSファジィ推論法であり、以下のように与えられる。

規則1: \(x = A_1, y = B_1 \Rightarrow z = f_1(x,y) \)

規則2: \(x = A_n, y = B_n \Rightarrow z = f_n(x,y) \)

事実 \(x, y \)

結論 \(z \)

ここで、関数 \(f_i(i=1,\cdots,n) \) は \(f: X \times Y \rightarrow Z \) なる関数であるが、通常は簡単のために一次式とすることが多い。事実 \(x, y \) に与えられたときのファジィ規則 \(i \) の前件部 \(A_i, B_i \) との適合度は

\[h_i = A_i(x) \cdot B_i(y) \]

(2)

と与えられ、後件部の関数値は \(f_i(x, y) \) とされる。\(h_i \) は、\(x, y \) に与えられたときの結論 \(f_i(x, y) \) が得られる度合であると解釈できることから、最終的な結論 \(z \) は、\(f_1(x, y), \cdots, f_n(x, y) \) と適合度 \(h_1, \cdots, h_n \) で荷重平均することにより

\[
\begin{align*}
1. & \quad A_1 \cdots a \\
2. & \quad B_1 \cdots b \\
\end{align*}
\]

\[
\begin{align*}
\text{図1 TSファジィ推論法}
\end{align*}
\]

\[
z = \frac{h_1f_1(x,y) + \cdots + h_nf_n(x,y)}{h_1 + \cdots + h_n}
\]

(3)

と与えられる（図1参照）。

【例】1次元の場合のTSファジィ推論法を考えてみよう。

規則1: \(x = A_1 \Rightarrow y = f_1(x) \)
規則2: \(x = A_2 \Rightarrow y = f_2(x) \)

事実 \(x \)

結論 \(y \)

\[
y = \frac{h_1f_1(x) + h_2f_2(x)}{h_1 + h_2}
\]

(4)

と与えられる（図2参照）。ここでは

\[
h_1 = A_1(x), h_2 = A_2(x)
\]

(5)

図2からも分かるように、このTSファジィ推論法は、ファジィ集合 \(A_1, A_2 \) の境界付近で関数 \(f_1(x) \) と \(f_2(x) \) とを結合（すなわち内挿）させる働きをもつ。

TSファジィ推論法では、関数 \(f(x,y) \) を決めるのが多少困難であるが、後件部が定数である簡略化推論法よりも明細な細かな処理が可能であり、盛んに使用されている。

次に、TSファジィ推論法の特殊な場合である簡略化推論法とは、そのファジィ規則に重みを付加したファジィシングルト型推論法について述べてみよう。

式(1)のTSファジィ推論法において、後件部の関数 \(f(x,y) \) を定数 \(a \) に置き換えたのが簡略化推論法である。
ルール: \[x = A_i, y = B_i \Rightarrow z = z_i \] と与える。

この簡略化推論法のルールの後件部 \(z_i \) 重み \(w_i \) 付き加えた、すなわちファジィシングルトン \(w_i/z_i \) にしたのが「ファジィシングルトン型推論法」（別名：重み付き簡略化推論法）[3,4]であり

ルール1: \(x = A_1, y = B_1 \Rightarrow z = w_1/z_1 \)
ルール2: 通過
ルール3: \(x = A_n, y = B_n \Rightarrow z = w/n/z_n \) とを表に

事実: \(x = x, y = y \)

結論: \(z = z \)のように与えられる。明らかに、\(w_i = 1 \) の場合は、簡略化推論法に帰着される。

以後の議論では、重み \(w_i \) は 0 以上の実数とする。

\(w_i > 1 \) のときはファジィルール \(A_i, B_i \Rightarrow z_i \) を「強調」することを表し、\(0 \leq w_i \leq 1 \) のときは「抑制」することを表す。

（注）重み \(w_i \) をすべて 1 以下に規格化することが考えられるが、この場合、あるルールを 2 倍に強調した場合に、他の重みをすべて 1/2 に変更しなければならないという不便さがある。

ファジィシングルトン型推論法による結論 \(z \) は以下のようにして求められる（図 3 参照）。

事実 \(x, y \) が与えられたときファジィルールの前件部 \(A_i, B_i \) との適合度 \(h_{wi} \) は式(2)と同様である。この適合度 \(h_{wi} \) に後件部 \(z_i \) の重み \(w_i \) を掛けたもの \(h_{wi}z_i \) が、\(z_i \) の得られる合度であるとみなせる。よって、最終的な結論 \(z \) は次のように与えられる。

\[
z = \frac{h_{1w1}z_1 + h_{2w2}z_2 + \ldots + h_{nw_n}z_n}{h_{1w1} + h_{2w2} + \ldots + h_{nw_n}}
\]

【例】次のようなファジィシングルトン型の推論形を考えよう。

ルール1: \(x = N \Rightarrow y = y_1 \)
ルール2: \(x = Z \Rightarrow y = w_0/0 \)
ルール3: \(x = P \Rightarrow y = y_1 \)

事実: \(x = x \)

結論: \(y = y \)

ここで、記号 \(w/0 \) は 0 に対する重みが \(w \) であることを表している。この推論形に対する推論過程は図 4 のようになり、重み \(w \) を \(w = 1/16, 1/4, 1, 16 \) のように変化させた場合の推論結果は図 5 となる。この図からわかるように、\(w \) を変えることにより \(x = 0 \) 付近での「傾き」を微妙に調整することができる。

この性質をファジィ制御に利用することにより、たとえば設定値付近での制御を微妙に調整することが可能となり、制御結果の改善が得られる[3,4]。
多出力型重み付きT-Sファジー推論法とその糖尿病診断データの判別分析への応用

3. 重み付きT-Sファジー推論法

簡略化推論法の規則に重みを付加したファジィシングルトン型推論法では、重みを変えることにより、推論結果の微妙な調整が可能になることを示し、簡略化推論法よりも表現能力が高くなることが分かった。

本章では、式(1)のT-Sファジー推論法に重み関数を付加した「重み付きT-Sファジー推論法」を提案する。これはファジーシングルトン型推論法の拡張として考えることができる。すなわち、T-Sファジー推論法の後件部の関数 \(f(x, y) \) に重み関数 \(w(x, y) \) を付加したものである。

\[
h_1 w_1(x, y) f_1(x, y) + \cdots + h_n w_n(x, y) f_n(x, y) = z
\]

と表される。ここで、記法 \(w(x, y) / f(x, y) \) は、関数値 \(f(x, y) \) のグレード（重み）が \(w(x, y) \) であることを表している。重み \(w(x, y) \) は \(w : X \times Y \rightarrow [0, \infty) \) なる非負関数であり、\(w(x, y) = 1 \) の場合は通常のT-Sファジー推論法に帰着される。

重み付きT-S推論法による結論 \(z \) は、関数値 \(f_1(x, y), \ldots, f_n(x, y) \) を、各適合度 \(h_1, \ldots, h_n \) に重み \(w_1(x, y), \ldots, w_n(x, y) \) を掛けたもの \(h_i w_i(x, y) \) で加重平均することにより得られる。すなわち

\[
h_1 w_1(x, y) f_1(x, y) + \cdots + h_n w_n(x, y) f_n(x, y) = z
\]

を与える。

【例】簡単な例として、1次元の場合の重み付きT-Sファジー推論法を考えてみよう。

規則1： \(x = A_1 \Rightarrow y = w_1(y) / f_1(x) \)
規則2： \(x = A_2 \Rightarrow y = w_2(y) / f_2(x) \)
事実： \(x = x_0 \)

結論： \(y = y_0 \)

この場合、推論結果 \(y_0 \) は式(12)より

\[
y_0 = \frac{h_1 w_1(x_0) f_1(x_0) + h_2 w_2(x_0) f_2(x_0)}{h_1 w_1(x_0) + h_2 w_2(x_0)}
\]

なる（図6参照）。}

ここで、前件部 \(A_1, A_2 \) を図7のようなファジー集合であるとする。

まず、最初に、式(13)において、\(f_1(x) = 1, f_2(x) = 6 \)で、\(w_1 = 1, w_2 = w_0 \)なる場合、すなわち

規則1： \(x = A_1 \Rightarrow y = 1 \)
規則2： \(x = A_2 \Rightarrow y = w_0 / 6 \)

のような重み付きT-S推論法を考える。これは明らかに、式(8)で述べたファジーシングルトン型推論法である。この場合、推論過程は図8のように与えられる。

このとき、重み \(w_0 \) を

\(w = 1/64, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 64 \)

のように変化させた場合の推論結果を求めると図9のようにになる。ここで、\(w = 1 \)の場合は通常の簡略化推論法による場合である。

このように重みを変化させることにより、簡略化推論法の場合（\(w = 1 \）よりも豊富な推論結果を得ることができる。
图7 式(13)のファジー集合 \(A_1, A_2 \)

图8 式(15)の推論過程

图9 式(15)において重み \(w \) を変化させた場合の推論結果

規則1: \(x = A_1 \Rightarrow y = x \) (16)
規則2: \(x = A_2 \Rightarrow y = w/0.5x \)

とした場合の推論結果は図10のようになる。この場合、
\(w=1 \) の場合は通常のTSファジー推論法による場合である。

さらに、式(13)において、\(f_1(x) = x, f_2(x) = 7-x \) とした場合、すなわち

規則1: \(x = A_1 \Rightarrow y = x \) (17)
規則2: \(x = A_2 \Rightarrow y = w/7-x \)

とした場合の推論結果は図11のようになる。この場合も、
\(w=1 \) の場合は通常のTSファジー推論法による場合である。

以上の議論では重み \(w \) は定数としてきたが、最後に、
式(13)における重みを関数、すなわち \(w(x) \) を採用した場合の推論結果を得てみよう。例えば、式(13)において、
\(f_1(x) = x, f_2(x) = 0.5x \) とし、重みを \(w_1(x) = 1 \) とし、
\(w_2(x) \) を変化させた場合、すなわち、

規則1: \(x = A_1 \Rightarrow y = x \) (18)
規則2: \(x = A_2 \Rightarrow y = w_2(x)/0.5x \)

において、\(w_2(x) = 0.01x, 0.03x, 0.06x, 0.17x, 1, x, 5x \)
とした場合の推論結果は図12のようになる。

以上のように、TSファジー推論法に重み \(w \) を付加する事により、極めの細かい推論結果を得ることが
4. 多出力型ファジィ推論法とその学習アルゴリズム

4.1 多出力型の簡略化推論法とその学習アルゴリズム

まず、多出力型の簡略化推論法を述べよう。式(7)のようにファジィ規則の後件側を実数値にしたのが「簡略化推論法」であり、一般に1出力型である。それに対して、後件側を多出力にした「多出力型の簡略化推論法」では、入力スイッチ出力型の推論規則は次のよう表せる。

\[
\begin{align*}
\text{規則} 1: & \quad x_1 = a_{11} \cdots x_n = a_{m1} \Rightarrow y_1 = y_{11}, \cdots, y_i = y_{i1} \\
\text{規則} 2: & \quad x_1 = a_{12} \cdots x_n = a_{m2} \Rightarrow y_1 = y_{12}, \cdots, y_i = y_{i2} \\
\text{規則} 3: & \quad x_1 = a_{13} \cdots x_n = a_{m3} \Rightarrow y_1 = y_{13}, \cdots, y_i = y_{i3} \\
\text{規則} 4: & \quad x_1 = a_{14} \cdots x_n = a_{m4} \Rightarrow y_1 = y_{14}, \cdots, y_i = y_{i4} \\
\text{規則} 5: & \quad x_1 = a_{15} \cdots x_n = a_{m5} \Rightarrow y_1 = y_{15}, \cdots, y_i = y_{i5} \\
\text{事実} & \quad x_1 = x_{16} \cdots x_n = x_{m6} \\
\end{align*}
\]

ここで、\(i = 1, \cdots, n \) は第 \(i \) 番目の規則、\(j = 1, \cdots, m \) は第 \(j \) 番目の出力、\(k = 1, \cdots, s \) は第 \(k \) 番目の出力を表す。

入力 \(x_1, \cdots, x_n \) に対する推論結果 \(y_1, \cdots, y_s \) は次のようにして得られる。規則 \(i \) の前件部 \(A_{1i}, \cdots, A_{mi} \) との適合度は、各 \(i = 1, 2, \cdots, n \) に対して

\[
h_i = A_i(x_1)A_{i2}(x_2) \cdots A_{im}(x_m)
\]

であり、結論 \(y_k \) は \(k = 1, \cdots, s \) に対して

\[
y_k = \frac{\sum_i h_i y_k}{\sum_i h_i}
\]

と与えられる。

入力パターン \(x_1, \cdots, x_n \) に対する理想値 \(y_1^*, \cdots, y_s^* \) とするとき、各推論値が \(y_k \) であったときの評価関数 \(E_k \) は次のように与えられる。

\[
E_k = \frac{1}{2}(y_k^* - y_k)^2, \quad k = 1, 2, \cdots, s
\]

ファジィ規則の前件部のメンバーシップ関数がガウス型関数で与えられている場合、すなわち、

\[
A_j(x_j) = \exp\left(-\frac{(x_j - a_j)^2}{b_j} \right)
\]

\(j = 1, 2, \cdots, m; i = 1, 2, \cdots, n \)

の場合の学習アルゴリズムは最急降下法により、各パラメータ \(A_j \) の“中心” \(a_j \) 、“分散” \(b_j \) 、後件部 \(y_k \) の \(k+1 \) 回目における自動チューニングアルゴリズムは以下のようになる。但し、\(k = 1, 2, \cdots, s \) である。

\[
a_j(t+1) = a_j(t) + 2\alpha_j y_k^* - y_k y_j h_j (x_j - a_j(t)) \sum_i h_i
\]

\[
b_j(t+1) = b_j(t) \cdot \beta_j (y_k^* - y_k y_j h_j (x_j - a_j(t))^2) \sum_i h_i
\]

\[
y_k(t+1) = y_k(t) + \frac{\gamma (y_k^* - y_k) h_j}{\sum_i h_i}
\]

ここで、\(\alpha, \beta, \gamma \) は学習係数を表す。
T Sファジィ推論法の後件部が多出力の場合は、
規則1 : \(x_1 = A_{1b} \cdots x_m = A_{mb} \Rightarrow y_1 = \varphi(x_1 \cdots x_m) \cdots y_s = \varphi(x_1 \cdots x_m) \\)

規則i : \(x_i = A_{ib} \cdots x_m = A_{mb} \Rightarrow y_i = \varphi(x_1 \cdots x_m) \cdots y_s = \varphi(x_1 \cdots x_m) \\)

規則n : \(x_1 = A_{1b} \cdots x_m = A_{mb} \Rightarrow y_1 = \varphi(x_1 \cdots x_m) \cdots y_s = \varphi(x_1 \cdots x_m) \\)

事実 : \(x_1 \cdots x_m \\)

結論 : \(y_1 = \varphi_i \cdots y_s = \varphi_s \) (27)

となり、事実 \(x_1 \cdots x_m \) と規則の前件部 \(A_{1b} \cdots A_{mb} \) の適合度 \(h_i \) は式(20)で与えられ、推論結果 \(y_k \) は

\[
y_k = \frac{\sum h_i f_u(x_1 \cdots x_m)}{\sum h_i} \quad k = 1, 2, \ldots, s \quad (28)
\]

となる。

後件部 \(f_u(x_1 \cdots x_m) \) を

\[
f_u(x_1 \cdots x_m) = p_{u0} + p_{u1} x_1 + p_{u2} x_2 + \ldots + p_{um} x_m \quad (29)
\]

のような一次式とする。まず、各 \(A_{ij} \) の“中心” \(a_i \)、“分散” \(b_i \) の上i回目における学習アルゴリズムは以下の如く与えられる。

\[
a_{i}(t+1) = a_{i}(t) + \frac{2(\Sigma y^{*} - y_{i})f_{u}(x_{1} \cdots x_{m}) - y_{i} h_{i}(x_{1} - a_{i}(t))}{\sum h_{i}} \quad (30)
\]

\[
b_{i}(t+1) = b_{i}(t) + \frac{\beta((y^{*} - y_{i})f_{u}(x_{1} \cdots x_{m}) - y_{i} h_{i}(x_{1} - a_{i}(t)))}{\sum h_{i}} \quad (31)
\]

さらに、式(29)の定数項 \(p_{1b} \) 、係数 \(p_{ib} \) に対する学習アルゴリズムは以下の如くになる。

\[
p_{1i}(t+1) = p_{1i}(t) + \frac{\delta(y^{*} - y_{i})h_{i}}{\sum h_{i}} \quad (32)
\]

\[
p_{ib}(t+1) = p_{ib}(t) + \frac{\epsilon(y^{*} - y_{i}) h_{i} x_{i}}{\sum h_{i}} \quad (33)
\]

ここで、\(\delta, \epsilon \) は学習係数である。

4.3 多出力型の重み付きT Sファジィ推論法とその学習アルゴリズム

重み付きT Sファジィ推論法の後件部を多出力にした「多出力型の重み付きT Sファジィ推論法」は、次のように表せる。

規則1 : \(x_1 = A_{1b} \cdots x_m = A_{mb} \Rightarrow y_1 = w_{10}(x_1 \cdots x_m) \cdots y_s = w_{10}(x_1 \cdots x_m) \\)

規則2 : \(x_1 = A_{1b} \cdots x_m = A_{mb} \Rightarrow y_1 = w_{11}(x_1 \cdots x_m) \cdots y_s = w_{11}(x_1 \cdots x_m) \\)

規則i : \(x_i = A_{ib} \cdots x_m = A_{mb} \Rightarrow y_i = w_{ii}(x_1 \cdots x_m) \cdots y_s = w_{ii}(x_1 \cdots x_m) \\)

規則n : \(x_1 = A_{1b} \cdots x_m = A_{mb} \Rightarrow y_1 = w_{in}(x_1 \cdots x_m) \cdots y_s = w_{in}(x_1 \cdots x_m) \\)

事実 : \(x_1 \cdots x_m \\)

結論 : \(y_1 = \varphi_i \cdots y_s = \varphi_s \) (27)

ここで、記号 \(w_{ij}(x_1 \cdots x_m) \) は、関数値 \(f_u(x_1 \cdots x_m) \) のグレード（重み）が \(w_{ij}(x_1 \cdots x_m) \) であることを表す。つまり、i=1, \ldots, n, k=1, \ldots, s。

適合度 \(h_i \) は式(20)で求められ、推論結果 \(y_k \) は

\[
y_k = \frac{\sum f_u(x_1 \cdots x_m) h_i \ w_{ik}(x_1 \cdots x_m)}{\sum h_i} \quad (35)
\]

(34) 式の出力型の重み付きT Sファジィ推論法の後件部 \(y_k = \varphi_i \cdots y_s = \varphi_s \) と重み関数 \(w_{ik}(x_1 \cdots x_m) \) を

\[
f_u(x_1 \cdots x_m) = p_{u0} + p_{u1} x_1 + p_{u2} x_2 + \ldots + p_{um} x_m \quad (36)
\]

\[
w_{ik}(x_1 \cdots x_m) = q_{i0}^{k} + q_{i1}^{k} x_1 + q_{i2}^{k} x_2 + \ldots + q_{im}^{k} x_m \quad (37)
\]

のような一次式とすると、各パラメータの学習アルゴリズムは以下のようにになる。

\[
a_{i}(t+1) = a_{i}(t) + \frac{2(\Sigma y^{*} - y_{i}) f_{u}(x_{1} \cdots x_{m}) - y_{i} h_{i}(x_{1} - a_{i}(t))}{\sum h_{i}} \quad (30)
\]

\[
b_{i}(t+1) = b_{i}(t) + \frac{\beta((y^{*} - y_{i}) f_{u}(x_{1} \cdots x_{m}) - y_{i} h_{i}(x_{1} - a_{i}(t)))}{\sum h_{i}} \quad (31)
\]

\[
p_{i}(t+1) = p_{i}(t) + \frac{\delta(y^{*} - y_{i}) h_{i} w_{ik}(x_{1} \cdots x_{m})}{\sum h_{i} w_{ik}(x_{1} \cdots x_{m})} \quad (32)
\]

\[
b_{i}(t+1) = b_{i}(t) + \frac{\epsilon((y^{*} - y_{i}) h_{i} w_{ik}(x_{1} \cdots x_{m}))}{\sum h_{i} w_{ik}(x_{1} \cdots x_{m})} \quad (33)
\]

\[
p_{i}(t+1) = p_{i}(t) + \frac{\delta((y^{*} - y_{i}) h_{i} w_{ik}(x_{1} \cdots x_{m}))}{\sum h_{i} w_{ik}(x_{1} \cdots x_{m})} \quad (34)
\]

\[
p_{i}(t+1) = p_{i}(t) + \frac{\epsilon((y^{*} - y_{i}) h_{i} w_{ik}(x_{1} \cdots x_{m}))}{\sum h_{i} w_{ik}(x_{1} \cdots x_{m})} \quad (35)
\]
多出力型重み付きＴＳファジ推論法とその糖尿病診断データの判別分析への応用

$$q^i_0(t+1) = q^i_0(t) + \lambda(x^i_t - y^i_k)h_0(x_t, \ldots, x_n)$$
$$\sum_{i=1}^{n} w_i(x_t, \ldots, x_n)$$

ここで、α, β, δ, ε, λ, σは学習係数である。

5. ニューロ・ファジイ学習法による糖尿病診断データの判別分析

5.1 方法

表1の5入力1出力の糖尿病データ（3群に判別）[7]を対象にして、ファジィ判別システムを構築する。但し、判別群は、1: 非糖尿病群に、2: 化学的糖尿病群、3: 正常群である。

多出力型のファジィ推論法を使用する場合は、判別群を3ビット、すなわち3出力型で表わすことができる、1出力型との対応を表2に示す。

表1 糖尿病データ[7]

<table>
<thead>
<tr>
<th>対象群</th>
<th>糖尿病群</th>
<th>肥満群</th>
<th>BSレベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>シンプル</td>
<td>145</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>0.74</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>0.39</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>0.83</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>0.81</td>
<td>80</td>
</tr>
</tbody>
</table>

（注）判別群（1,0,0）：臨床的糖尿病群（33個）、
（0,1,0）：化学的糖尿病群（36個）、
（0,0,1）：正常群（76個）

表2 3出力型の判別群

<table>
<thead>
<tr>
<th>判別群</th>
<th>1出力型</th>
<th>3出力型</th>
</tr>
</thead>
<tbody>
<tr>
<td>臨床的糖尿病群</td>
<td>1</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>化学的糖尿病群</td>
<td>2</td>
<td>(0,1,0)</td>
</tr>
<tr>
<td>正常群</td>
<td>3</td>
<td>(0,0,1)</td>
</tr>
</tbody>
</table>

係数q^i_0は0とした。

以上の実験を、多出力型の簡略化推論法、T.Sファジィ推論法および重み付きT.Sファジィ推論法に対してニューロ・ファジィ学習法を適用し、それらの判別結果の比較・検討を行う。

判別方法は、推論結果y_k（k=1,2,3）より、以下のようになる判別群を決定する。

3出力型$(y_1', y_2', y_3') = \begin{cases} \text{臨床的糖尿病群} & (y_1' \text{が最大}) \\ \text{化学的糖尿病群} & (y_2' \text{が最大}) \\ \text{正常群} & (y_3' \text{が最大}) \end{cases}$

評価値：評価手法は以下の平均二乗誤差と正答率

$$D = \sum_{k=1}^{n} \sum_{p=1}^{r} (y_k - y_k')^2$$

によって行う。ここで、a: 平均二乗誤差、P: データ数、y_k'：理想出力値、y_k: 推論値、s=3。

正答率=$\frac{\text{入力データの判別結果と理想データが一致するデータ数}}{\text{データ数}} \times 100\%$ (46)

5.2 シミュレーション結果

糖尿病データに対して、ランダムに12種類の教師データ75個を取り、3種類の多出力型のファジィ推論法による場合の学習を行い、判別結果を比較・検討する。
3. 出力型の場合の判定結果（簡略化推論法）

<table>
<thead>
<tr>
<th>パターン</th>
<th>教師データ</th>
<th>評価データ</th>
<th>平均二乗誤差</th>
<th>正答率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2244</td>
<td>87.46</td>
<td>0.1014</td>
<td>93.90</td>
</tr>
<tr>
<td>2</td>
<td>0.2287</td>
<td>87.50</td>
<td>0.1059</td>
<td>78.08</td>
</tr>
<tr>
<td>3</td>
<td>0.0568</td>
<td>95.83</td>
<td>0.1031</td>
<td>80.82</td>
</tr>
<tr>
<td>4</td>
<td>0.0693</td>
<td>91.67</td>
<td>0.1023</td>
<td>80.82</td>
</tr>
<tr>
<td>5</td>
<td>0.0694</td>
<td>91.67</td>
<td>0.1004</td>
<td>87.67</td>
</tr>
<tr>
<td>6</td>
<td>0.0841</td>
<td>88.89</td>
<td>0.0873</td>
<td>94.93</td>
</tr>
<tr>
<td>7</td>
<td>0.0663</td>
<td>90.28</td>
<td>0.0985</td>
<td>82.19</td>
</tr>
<tr>
<td>8</td>
<td>0.0877</td>
<td>83.33</td>
<td>0.0802</td>
<td>78.08</td>
</tr>
<tr>
<td>9</td>
<td>0.0584</td>
<td>93.06</td>
<td>0.1036</td>
<td>78.08</td>
</tr>
<tr>
<td>10</td>
<td>0.0675</td>
<td>88.89</td>
<td>0.1131</td>
<td>75.34</td>
</tr>
<tr>
<td>11</td>
<td>0.0707</td>
<td>91.67</td>
<td>0.0795</td>
<td>83.56</td>
</tr>
<tr>
<td>平均</td>
<td>0.0689</td>
<td>89.93</td>
<td>0.0954</td>
<td>82.81</td>
</tr>
</tbody>
</table>

4. 出力型の場合の標準結果（TS推論法）

<table>
<thead>
<tr>
<th>パターン</th>
<th>教師データ</th>
<th>評価データ</th>
<th>平均二乗誤差</th>
<th>正答率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0523</td>
<td>94.44</td>
<td>0.2061</td>
<td>66.30</td>
</tr>
<tr>
<td>2</td>
<td>0.0491</td>
<td>95.83</td>
<td>0.0992</td>
<td>82.19</td>
</tr>
<tr>
<td>3</td>
<td>0.0532</td>
<td>93.06</td>
<td>0.2266</td>
<td>78.08</td>
</tr>
<tr>
<td>4</td>
<td>0.0505</td>
<td>95.83</td>
<td>0.0920</td>
<td>84.93</td>
</tr>
<tr>
<td>5</td>
<td>0.0591</td>
<td>91.67</td>
<td>0.0998</td>
<td>82.19</td>
</tr>
<tr>
<td>6</td>
<td>0.0571</td>
<td>94.44</td>
<td>0.0957</td>
<td>87.67</td>
</tr>
<tr>
<td>7</td>
<td>0.0549</td>
<td>94.44</td>
<td>0.1103</td>
<td>91.78</td>
</tr>
<tr>
<td>8</td>
<td>0.0626</td>
<td>91.67</td>
<td>0.1112</td>
<td>87.67</td>
</tr>
<tr>
<td>9</td>
<td>0.0674</td>
<td>88.89</td>
<td>0.0627</td>
<td>89.04</td>
</tr>
<tr>
<td>10</td>
<td>0.0466</td>
<td>94.44</td>
<td>0.0957</td>
<td>82.19</td>
</tr>
<tr>
<td>11</td>
<td>0.0582</td>
<td>93.06</td>
<td>0.0917</td>
<td>80.82</td>
</tr>
<tr>
<td>12</td>
<td>0.0620</td>
<td>93.06</td>
<td>0.0989</td>
<td>80.82</td>
</tr>
<tr>
<td>平均</td>
<td>0.0569</td>
<td>93.40</td>
<td>0.1160</td>
<td>84.47</td>
</tr>
</tbody>
</table>

5. 出力型の場合の判定結果（重み付きTS推論法）

<table>
<thead>
<tr>
<th>パターン</th>
<th>教師データ</th>
<th>評価データ</th>
<th>簡略化推論法</th>
<th>TS推論法</th>
<th>重み付きTS推論法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7639</td>
<td>73.60</td>
<td>87.50</td>
<td>90.04</td>
<td>84.44</td>
</tr>
<tr>
<td>2</td>
<td>0.7361</td>
<td>88.89</td>
<td>79.45</td>
<td>95.83</td>
<td>82.19</td>
</tr>
<tr>
<td>3</td>
<td>0.7917</td>
<td>65.75</td>
<td>87.50</td>
<td>93.06</td>
<td>78.08</td>
</tr>
<tr>
<td>4</td>
<td>0.7083</td>
<td>89.83</td>
<td>80.82</td>
<td>98.93</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.7639</td>
<td>67.12</td>
<td>91.67</td>
<td>90.82</td>
<td>82.19</td>
</tr>
<tr>
<td>6</td>
<td>0.6944</td>
<td>76.71</td>
<td>87.67</td>
<td>94.44</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.6389</td>
<td>76.71</td>
<td>84.93</td>
<td>94.44</td>
<td>91.78</td>
</tr>
<tr>
<td>8</td>
<td>0.7500</td>
<td>68.49</td>
<td>92.19</td>
<td>87.67</td>
<td>82.19</td>
</tr>
<tr>
<td>9</td>
<td>0.6687</td>
<td>75.34</td>
<td></td>
<td>87.67</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.7221</td>
<td>72.23</td>
<td>91.67</td>
<td>84.44</td>
<td>82.19</td>
</tr>
<tr>
<td>11</td>
<td>0.7500</td>
<td>68.49</td>
<td></td>
<td>93.06</td>
<td>80.82</td>
</tr>
<tr>
<td>12</td>
<td>0.7639</td>
<td>69.86</td>
<td>91.67</td>
<td>93.06</td>
<td>80.82</td>
</tr>
<tr>
<td>平均</td>
<td>0.7639</td>
<td>70.89</td>
<td>89.93</td>
<td>93.40</td>
<td>84.47</td>
</tr>
</tbody>
</table>

また、従来の1出力型のファジィ推論法の場合の比較検討も行なった。
なお、1出力型の場合[2]では、推論結果rにより以下の判定結果に分けている。

* y<1.5 ⇒ y = 1（脳の発育不全群）
* 1.5≤y<2.5 ⇒ y = 2（発育不全群）（47）
* y≥2.5 ⇒ y = 3（正常群）

表3～6から分かるように、出力型の場合、教師データと評価データに対して、重み付きTSファジィ推論法が平均的に最も良の判断結果を得ており、簡略化推論法も最も低い判定結果を得ていることが分かった。

しかしながら、表7から分かるように、出力型と1出力型を比較した場合、平均的に、1出力型のファジィ推論法の場合の正答率が優れているが、高まっている。これは、対象にした糖尿病診断データの特性群を、既存のファジィ推論法の特性群を、2（慢性の発育不全群、3（正常群）であるが、慢性の発育不全群と発育不全群（脳の発育不全）には重篤な演算関係がはっきりしており、式(47)のような演算方法を用いていることから、1出力型のファジィ推論法が良い結果を得ることを示す。

以上のことから、1出力型と3出力型の場合とも、既存のファジィ推論法よりも、重み付きTSファジィ推論法が最も良い推論結果を得ることが分かる。

6. おわりに

最も汎用的なファジィ推論法であるTSファジィ推論法に対して重み関数を修正した「重み付きTSファジィ推論法」を提案し、その応用例として、ニュー
多出力型重み付きTSファジィ推論法とその糖尿病診断データの判別分析への応用

参考文献
[1] 吉野、ファジィ制御、日刊工業新聞社
[6] 石・水本・湯場崎・大谷、ニューロ・ファジィ学習アルゴリズムによるファジィ規則の一生成法、日本ファジィ学会誌、Vol.8、No.4、pp.695-705（1996）