頭部損傷基準値（H I C）の理論的分析

中野正博1，松浦弘幸2，玉川雅章3，山中真2，行正徹1
1）産業医科大学 2）国立長寿医療研究センター
3）九州工業大学 大学院生命体工学研究科

要約：事故による頭部への衝撃の程度を表すのに一般的に使われている頭部損傷基準値 HIC の意味とその意味を分析する。日本自動車研究所（JARI）においてダミーロボットを用いて実験した加速度のデータに基づいて分析を行う。まずHICの式の中にある2.5乗がノイズを拾わず、主たるピークだけを取り上げるうまい仕掛けになっていることを示す。次に、ガウス関数による加速度のフィットが近似になることを示し、HICを解析的に積分し、HICがピーク値Aと標準偏差σの2次の変数の簡単な表現式を示す。求められた理論的HICは、実験と良く一致する。このことから、HICの意味を現実的とすることが、HICの変動を示すピークの幅を大きくすることがHICを下げる事を示す。さらに、ヘルメットがピークの幅を大きくし、HICを危険領域から、安全領域まで下げることを示す。

キーワード：HIC，ガウス関数フィッティング，HICの単純な表現，ヘルメットの効果

Theoretical Analysis of Head Injury Criterion (HIC)
Masahiro Nakano1, Hiroyuki Matsuura2, Masaaki Tamagawa3, Makoto Yamanaka2, Toru Yukimasa1, and Masami Kubota4

1) University of Occupational and Environmental Health, Japan
2) National Center for Geriatrics and Gerontology
3) Graduate school of Life Science and System Engineering, Kyushu Institute of Technology
4) Japan Automobile Research Institute

Abstract: This research was done to clarify the meaning and the essential features of the HIC. At first, it is shown that as the order of the exponent in the equation of HIC is higher, the selected time interval becomes narrow, and the role of the exponent of 2.5 is a way to select the main peak from the noise. Next the data of the experiments using Articulated Total Body in JARI is shown, and the obtained actual accelerations are shown well fitted by Gauss function. Gauss fitting is well applied for almost all cases. Next we derived a simple formula to calculate the HIC based on Gauss function. As a result, HIC are expressed by only two parameters, i.e., amplitude A and distribution (sigma). The results will be important for the future works of the analysis based on the HIC. We show that the HIC strongly depends on the sharpness of the peak. The sharpness is determined by floor condition and protectors for head and body. It is concluded that helmet is very useful since it makes a long duration in collision, then it makes HIC lower than that without a helmet.

Keywords: HIC, Gauss fitting, simple formula of HIC, effect of helmet

Masahiro NAKANO
Iseigaoka 1-1, Yahata-nishi, Kitakyushu, 807-8555, Japan
Phone: +81-93-691-7159, Fax: +81-93-691-8380, E-mail: nakano@med.uoeb-u.ac.jp

57
1. はじめに

日本において転倒転落事故による死亡は、不慮の事故による死亡の大きな原因である。特に、15歳から64歳では、転倒転落の事故死がおおきな割合を占める。

（ちなみに、幼児や高齢者の不慮の事故による死亡では、窒息死や風呂での溺死が多い）転倒転落の事故死の多くは、脳挫傷や意識喪失や出血、神経障害などのような頭部への深刻な損傷によるものである。頭部へのどのくらいの衝撃が、一般的にどのような損傷を与えるかを示す指標を考えることは意味があるのだろうか。頭部は、細かく言うと、顔、頭髪、表皮、頭蓋硬膜など複雑な構造をしており、頭蓋の形も球形でなく、縦縦線が走っており、どの部位にどのように衝撃を受けるかで頭蓋と脳へのダメージは、当然異なる。しかし、事故全体を統計として見てゆくと、頭部への衝撃の大きさと致命的な損傷の程度は、関連をしている。従って、ここに頭部への衝撃の大きさを示す指標を考える意味が生じる。

頭部損傷基準値（HIC）は、車やバイクなどの交通事故、転倒転落事故、運動による頭部損傷などの事故による頭部への衝撃の程度を表現するのに一般的に使われている。また、HICは色々な事故に対するプロテクタや、スポーツ用品の安全性を評価するのにも使われている。

歴史的には、フットボールのヘルメットの安全性の評価のために、Gaddが1966年に、Gadd危険度指数（GS1）を導入した。GS1は、衝撃を受けている短い時間長（T）とその間の加速度の平均値（a）で表され、それが1000以下ならば、危険ではないと判断されると提唱した[1]。

\[a^{25} \times 1,000 \leq 1,000 \quad (1) \]

実際には、加速度は、衝突の瞬間に大きく変化するので、平均値は、本質的には、意味をなさない。そこで1971年にVersaceが加速度の時間変化を取り入れられるようにGS1にVersace補正を導入した[2]。

\[[\frac{1}{T} \int a(t) \, dt]^{25} \times 1,000 < 1,000 \quad (2) \]

多くのデータがこの式に基づいて分析されてきたし、ATB（人工的全体像）モデル、いわゆるダミーロボットを使って衝突転倒実験が行われ、その有効性が確かめられた[3]～[6]。これらの実験データの集積とVersace補正の有効性に基づき、National Highway Traffic Safety Administration (NHTSA)は、1971年にVersace補正をより厳密に定義した頭部損傷基準値（Head Injury Criterion：HIC）を導入した。HICは、加速度（a）の時間変化 a(t) を用いて（3）式で定義される。（3）式では、加速度（a）を重力加速度を単位に、時間は秒を単位にしている。

\[
\text{HIC} = \left(\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) \, dt \right)^{25} (t_2 - t_1) \max
\]

ここで、t1とt2は、積分を始める開始時間と終わりの終結時間である。記号 max が、この値の最大値を取ることを意味するので、この時間t1、t2は、HICが最大になるように選ばなければならない。しかも、通常、積分時間長t2-t1は、15 ms（もしくは36 ms）の範囲を超えないように探す。

この式は、HICが、頭部の加速度 a(t) とそれに受けている衝撃時間で表される事示している。言葉で言うと、HICは、衝撃時間t1からt2までの平均加速度の2.5乗掛けて衝撃時間間隔の（t1、t2を色々と変えた時の）最大値である。従って、本質的には、GSIと同じである。ただ、t1、t2を色々と変えても、最大値は探す点が異なっているだけである。

事故などによる頭部への衝撃では、頭部加速度は、ごく短い時間で、大きく変化するのが一般的である。ダミーロボットを使ったATB衝突転倒実験では、加速度を、ダミーロボットの頭部の中心にセットし、実際の衝撃を計測する。頭部加速度の時間変化から、HICを算出する。GSIで示されたように、HIC=1000は、重大損傷がこれ以下になるという目安のひとつに挙げられている。

ここで、すこし、HICの大きさと頭部損傷の危険性との関係について述べる。統計的に見れば、HIC-15（15 msの間の最大値）が1000だと、衝撃を受けた成人の5％が入院の危険に瀕する重篤な損傷を受ける。この損傷は、損傷の医学的評価で使われているAbbreviated Injury Scale (AIS)で、4＋に対応している。

HIC=1500 の場合は、衝撃を受けた成人の18％
が、脳挫傷、12 時間以上の意識喪失や出血、神経障害を伴う回復の見込みの判らないものなど、人命の危機に瀕する破壊的損傷を受ける。また、55％は、頭蓋骨の骨折、もしくは意識喪失を伴う顔の骨折や深い切り傷などの重大損傷を受ける。さらに、ほとんどの場合、意識障害のない頭部の外傷、鼻や歯の骨折と顔の表面上の外傷などの軽度の損傷を受ける。

Fig. 1 HIC 値に対する頭部損傷のレベルの確率

HIC を定義した（3）式は、物理的に見ると、奇妙な点がある。それは、層に分かれている幕の 2.5 乗で、これは、HIC の物理的意味を表している。また、単位が、合理的意味をなさない。それでは、なぜ、幕を 2.5 乗にしたのか？ この理由を次の章で述べる。

2. 幕の意味

最初に注意したいのは、HIC は基準の定義のひとつであり、2.5 乗がとりわけ意味のある数字ではないことである。物理的側面からすると、1 乗が、自然な意味を持つ。しかし、1 乘なら、その指数は、速度の変化を表す。しかし、2.5 乗には、そのような意味はない。では、なぜ、2.5 乗にしたのか？ 本論では、2 つの意味を指摘したい。

ひとつは、ATB を用いた実験や、実際の事故のデータに基づくと、2.5 乗にした HIC が、頭部損傷の程度とよく相関しているからである。HIC = 1000 という数字も区切りが良い。しかし、厳密には、これだけでは、2.5 乗が良いとは出てこない。

もう一点は、数学的側面である。この点を、本論では分析してゆく。HIC は、頭部加速度の時間変化から、計算される。そこで、ひとつの実際の例を以下に示す。「7」。この例は、車が正面から、人(成人)に衝突し、ボンネットにぶつかった時の加速度である。

Fig. 2 加速度の時間変化の一例

この例をシミュレートして、分析用のサンプルデータを作る。図のグラフは、本質的に図 2 と同じである。

Fig.3 分析用の加速度の時間変化；三角形とガウス形

サンプルデータは、1 個の主ピークと 2 個の副ピークを持つ。これは、頭が猛然と打ったことを示す。最初の主ピークは、△形の波とガウス関数形の二通りが取られる。分析は、どちらでも行ったが、ガウス関数形の例を示す。さて、これを用いて、幕の効果を調べる。幕を、1 乗、1.5 乗、2 乗、2.5 乗、3 乗、4 乗と 6 通りに、変化させてみる。
最大のHICを与える時間間隔t2 − t1がどのように変わるかを調べると面白いことがわかる。

Fig.4 積分の時間間隔を広げた時のHIC。

Fig.5 HICの最大値を与える時間間隔

大きな幕では、大きな値と小さな値の差をより大きく増幅して計算するため、大きな幕ほど、主ピークの高い所の狭い範囲に最大値がある。つまり図3のように、幾つかのピークがあり、全体ピークや、ノイズを拾うことなしに、主ピークの効果のみをカウントしたいときには、この幕が選択的働きを持つ。結論として幕の2.5乗は、主な大きなピークのみを選択的に取り上げるために、働くと言える。さらに、ガウス関数ピークに対しては、指数にはスケーリング則があって、2.5乗より大きな指数は、どれをとっても本質的には同じである。

3. ガウス関数フィットとHICの単純な表現

我々のグループは、Japan Automobile Research Institute (JARI) で、ダミーロボットを用いた転倒実験を行い、頭部、胸部、腰、大腿部の加速度と関連物理量の測定を行った。実験は、色々な条件を変えて、実験番号T1からT18まで18通りあるが、そのうちの0度方向真後ろへの転倒実験のT18とT14を紹介する。頭部中心に設置した加速度センサーで計測した瞬間の加速度は、例えば、T18（頭部へのブレーカーなし）では、図6の様に、全測定時間2秒間の間に、急なピークが1個たっているのが分かる。このピークは拡大すると、わずか1.5m/sの間にあり、図2の6msとは、大きく異なっていることがわかる。

Fig.6 T18実験：ダミーロボットを立位から真後ろに転倒させた場合の加速度。
Fig.7 T18実験の拡大図と、ガウス関数フィット

この関数をガウス関数を使ってフィットすると、

\[G = 7750 \times 1 \times (t - 0.35843) / 0.00027^2 \]

で非常に良くフィットすることが分かれる。事実、HICも、実験では6403であり、計算値は、6472と良く一致している。後で示すが、ガウス関数フィットは、多くの場合にかなり良い近似を与える。

従って、ガウス関数をベースにして、HICを理論的に積分して解析的表現を与えることができる。

HICの最大値を与える時間間隔t 2−t 1は、HICの積分値を時間間隔で微分してとめることで、

\[t 2−t 1 = T \times 2t \]

は、ここの場合の積分値の反転値で、n乗の式は、

\[\text{HIC} = \left[\frac{1}{t} \int_0^t A \exp(-t^3/(2 \sigma^2)) \, dt \right]^n \]

で、微分して0を置き、得られる式で、

\[x = t / \sigma \sqrt{2} \]

とおくと、

\[E(p) = n/(n-1) \times x \exp(x) \]

を満たすxが、HICを最大にする。

ここで、E(p)は、誤差関数であり、

\[E(p) = \int_0^x \exp(-t^2) \, dt \]

で定義される。

この解は、べき乗のnが増加するとき、時間幅が増少することを示している。特に、n=1は特殊で、時間幅は、無限大となる。べき乗がn=2.5の時は、\(t = 1.2 \sigma \)を与える。

\(n=2.5 \)の時、最大積分を与える時間間隔t 2−t 1はガウス関数の標準偏差\(\sigma \)の2.4倍であることを示すが、HICは次のような簡単な式で、対する。

\[\text{HIC} = 2.4 \times (0.80^* A/9.8)^{2.5} \]

\[= 0.0046 \times A^{2.5} \]

ここで、Aはピーク値で、単位は[m/s²]。\(\sigma \)は標準偏差で、単位は[s]である。この公式を用いた例を表1に示した。HIC EXPが、式（3）による計算で、HIC calは、式（4）による理論的値である。多くの場合に、良い近似を与えることがわかる。

ここで、式（4）式は、単に、良い近似を与えるだけではないことを指摘しておきたい。この式により、HICの本質的な部分を、理論的に解明できることになる。

Table 1. ガウス関数応衝撃でのHICと理論式（4）の値

<table>
<thead>
<tr>
<th>Amp</th>
<th>(\sigma)</th>
<th>t1</th>
<th>t2</th>
<th>(t2-t1)/2</th>
<th>HIC</th>
<th>HIC cal</th>
</tr>
</thead>
<tbody>
<tr>
<td>7450</td>
<td>0.00028</td>
<td>0.3581</td>
<td>0.3587</td>
<td>1.07143</td>
<td>6028</td>
<td>6170</td>
</tr>
<tr>
<td>3725</td>
<td>0.00056</td>
<td>0.3577</td>
<td>0.3591</td>
<td>1.25</td>
<td>2184</td>
<td>2181</td>
</tr>
<tr>
<td>2483</td>
<td>0.00084</td>
<td>0.3574</td>
<td>0.3594</td>
<td>1.19048</td>
<td>1192</td>
<td>1187</td>
</tr>
<tr>
<td>1866</td>
<td>0.00112</td>
<td>0.357</td>
<td>0.3598</td>
<td>1.25</td>
<td>774</td>
<td>771</td>
</tr>
<tr>
<td>1490</td>
<td>0.0014</td>
<td>0.3567</td>
<td>0.3601</td>
<td>1.21429</td>
<td>554</td>
<td>551</td>
</tr>
<tr>
<td>1241</td>
<td>0.00168</td>
<td>0.3564</td>
<td>0.3604</td>
<td>1.19048</td>
<td>422</td>
<td>419</td>
</tr>
</tbody>
</table>

4. 速度の変化と落下距離

（4）式は、HICがピーク値Aの2.5乗に比例し、標準偏差\(\sigma \)、つまり、ピークの幅に比例していることを示している。この式は、もう少し、現実的に出来る、加速の積分値が、速度の変化になるから、速度変化Sは、

\[S = \sigma (2 \pi)^{0.5} A \]

で与えられる。

このSが、落下距離にすべて対応すると仮定すると、自然転倒の高さ、あるいは、フリーフォールの高さhは、
頭部損傷基準値（HIC）の理論的分析

\[h = \frac{S^2}{(2g)} \quad (6) \]
となる。これを用いると、T18実験の理論的落下距離は、S=5.23m/s で \(h=1.39 \)m となるが、これは、ダミーロボットの高さ1.45mとよく一致している。

以上の準備のもと、HICは、速度変化Sと標準偏差\(\sigma \)を用いて、（7）式のように表される。

\[\text{HIC} = 0.462 \cdot \frac{S^{2.5}}{\sigma^{1.5}} \times 0.001 \quad (7) \]

これを、見ると同じ高さから転倒した場合、HICは、ピークの幅が狭いほど、HICは、大きくなることが説明出来る。逆に言うと、HICを下げるには、ピークの幅を広げればよいと言うことになる。ピークの幅は、床の強さと頚部の強さ、防護帽子（ヘルメット）の有無によって決まる。

5. ヘルメットの効果

我々の行った実験には、ダミーロボットに帽子をかぶせた実験T1や市販の自転車用ヘルメットをかぶせた実験T14などがある。これまでの理論的考察を生かしてガウス関数フィットを行い、幅の効果を見てみよう。

<table>
<thead>
<tr>
<th>T14 with helmet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp 1.3804 1.3858 466.628</td>
</tr>
<tr>
<td>Gal. 1.3811 1.3855 469.242</td>
</tr>
<tr>
<td>SKG=1.83ms</td>
</tr>
</tbody>
</table>

Fig.8 T14実験：ダミーロボットを立位から真後ろに転倒させた場合の加速度．ヘルメットあり．

T14実験結果の図8でわかるように、ヘルメットが有ると、主なピークは、大きく幅を広げている。前

の小さなピークが、ヘルメットが床に当たったときの衝撃加速度で、それから遅れて、本当に頭部が激突している。この場合、ヘルメットのために波形は、かなり崩れているが、ガウス関数フィットは、波形の良

い近似を与えている。実際、HICは、実験466、理論469と良く一致している。また、理論的に推定される落下の高さは\(h=1.64m \)で、これも初速度があったことを考えれば、ほぼ一致している。T14実験の大体の点は、\(\sigma=1.83m/s \)であり、T18の\(\sigma=0.28m/s \)より6.5倍も大きいことである。この事により、HICが約16分の1まで下がり、HICを危険領域から、安全

領域まで下げている。この実験では、ヘルメットの効果が定量的に、きわめて示されている。

6. 結論

本論では、HICの本質的意味を分析した。高い幕がノイズを拾わず、主たるピークだけをとり上げる繰り込み群と同様になっていることを示した。また、ガウス関数による加速度のフィットが良い近似になることを示し、HICを解析的に積分し、HICがピーク値Aと標準偏差\(\sigma \)の2つの変数の簡単な形で表せるこ

とを示した。このことから、更にHICの意味を汲み取ることができ、HICを速度変化とピークの幅で表し、ピークの幅を大きくすることがHICを下げる事を示した。さらに、ヘルメットがピークの幅を大きくし、HICを危険領域から、安全領域まで下げる事を示した。

日本では、毎年5000人が交通事故で死亡する。その半数近くが頭部損傷が原因とされている。また老人の転倒や転落事故による頭部損傷は、これからも大きな問題として残るだろう。頭部損傷の指標としてのHICは実験データを分析しながら、その有効性がさらに確かめられなければならない。

謝辞

著者は、このプロジェクト研究に対して財政的支援を与えて頂いた New Energy and Industrial Technology Development Organization (NEDO) in Japan に対して、我々の深い感謝を表明する。また、ダミーロボットを用いて、関連する実験を支援していただいた日本自動車研究所（JARI）の久保田正美博士、小口誠博士と安全研究部スタッフに感謝する。
参考文献