Mechanism of Degradation for Biocompatible Materials (3)

Virtual X-ray Scattering Models & Quantum Scattering Method

Hiroyuki MATSUURA¹, Masahiro NAKANO², Nobuo NODA¹, Kazuharu KOIDE¹, Yasumi ITŌ¹, Tetsuya NEMOTO¹

1) Department of Geron-technology, National Center for Geriatrics and Gerontology, Department of Geron-technology

2) University of Occupational and Environmental Health

Abstract: We performed to analyze degeneration mechanisms of medical histocompatible materials with using small angle X-ray diffraction method. The most important problem is why we cannot prevent biomaterials from dystrophic calcification. In order to investigate the causes of degeneration of biomaterials in the view of the molecular theories, we developed the quantum scattering distribution method (QSD) and virtual polyurethane method (VPU) from molecular mechanics, molecular dynamics and quantum mechanics. Finally, we knew that Silicon (Si) included in the silan coupling agent (siloxane) have so large negative atomic charges that they are attracting many kinds of protein and dystrophic calcium. Moreover, we succeeded to reproduce results of the small X-ray diffractions when we simulated virtual X-ray diffraction experiments by VPU and QSD. And those numerical methods supported that the scaling law being proposed in the fractal analysis of small X-ray diffractions gives us certainly correct relation between momentum transfer and electron densities.

Keywords: fractal analysis, acceleration torture test, biocompatible materials, mechanism of degeneration, small angle X-ray diffraction, scattering theories, numerical science, MM, MD, quantum dynamics, scaling law
1. はじめに

生体組織の劣化と血栓形成に伴う合併症の防止には、抗血栓栓の獲得が重要である[1][3]。我々は先の論文で、小角散乱実験のフラクタル解析や粘弾性モデルを用いた加速耐久試験、慢性疲労実験、および動物実験の結果の考察を行った[4][6]。これにより、セグメントポリウレタンの急性疲労実験（加速耐久試験）は、生体内での劣化過程とは、全く異なる破壊プロセスである可能性が示唆された。破壊の過程においては、クセリングが生じ、高分子の形状は比較的良好に保たれていることも示された[7][10]。

フラクタル解析に続いて行われた規格化電子密度分布関数と距離・電子数分布関数、そして、連結マックスウェルモデルを用いて、劣化の状態を評価した結果、400Åごとの間隔で高分子鎖が複雑な絡まり合いを形成していることも示唆された。試料の引張りと垂直方向に強い圧縮作用が働くために、非常に高い電子数分布が発生した。加速耐久試験では（動的変形試験）では、高分子鎖の切断が主要な劣化機序であり、動物実験による人工心臓の劣化では、高分子の絡み合い状態での引き伸ばしが中心となる。つまり、規格化電子密度分布や連結マックスウェルモデルに基づく解析からも、高分子鎖は切断、圧縮、そして絡まりの解けなどの過程を経て破壊されて行くが、加速耐久試験と動物実験での生体材料としてのセグメントポリウレタン破壊の機序は、全く別物であることが再度確認された[11][16][18]。

本論文では、セグメントポリウレタン（K-III）の分子の中で、カルシウムや金属が付着しやすい部位を観出す目的で、計算科学の手法を用いて原子間距離、双極子モーメントなどの物性値を見積もり、さらに、分子力学法、分子動力学法、半量子力学法を利用して[15][16]、セグメントポリウレタンの原材料であるジソシアナート、ジェンチロキサン、ジオール、そして、ポリウレタンの単体物と重合体の構造を考える。

次に、約30mmのセグメントポリウレタンの塊を計算機上で形成し、この塊をランダムに積み上げることにより、ヴァーチャルポリウレタンシート（VPU）を形成した（VPU法）。このVPUに計算機上で仮想的なX線を照射して、その散乱強度分布を計算した。量子散乱理論を用いて、散乱幅の位相差を計算し、この位相差を基にして散乱確率分布を計算した（量子散乱分布）。

このVPU法と量子散乱分布の計算結果を、実験の小角散乱実験から得られた散乱X線の強度分布を比較して、セグメントポリウレタンの構造に関する知見を得ようとした。この結果は、先の論文[17][18]で指摘した劣化過程のスケーリング則が成立していることが、計算科学的見地からも示された。

2. 実験の条件と設定

我々は、静的、動的変形試験、急激な変形による動的な変形実験、そして、実際に人工心臓を装着したヤギに用いた後の試験などを用いて、その実験結果を比較検討した。

試料は、静的、動的変形試験、急激な変形による動的な変形実験、そして、実際に人工心臓を装着したヤギに用いた高分子人工弁とした。これらの試料は、全てセグメントポリウレタン（K-III）である。静的変形実験（慢性疲労実験）では、平均厚さ50μmの膜状のポリウレタンシートを作成した[11][17][18]。このシートを幅5mm長さ3cmの短冊状に応力の緩和を考慮しながら切り出した後、室温21℃で100g、150g、300gの一応的な引張り荷重を一定時間加えて作成した。動的変形実験（急性疲労実験、加速耐久試験）では、厚さ50μmの人工弁（Jellyfish弁）を作成し、人工弁加速耐久試験装置（水中にてリニアモーターを用いて人工弁を振動させる方法）を用いて、水中にて振幅2mm、振動数20Hzの振動を人工弁に24時間与えた後、別に加速耐久試験を行った。

上記の方法により得られた試料（慢性疲労実験、急性疲労実験、動物実験）を、シート用試験ホルダーに装着し、小角散乱X線回折装置を用いて超前方領域（散乱角0.14° 〜1°）のX線の散乱強度を測定した[11][17][18]。K-IIIが結晶部分と非結晶部分の混合物であり、ポリエーテルポリウレタン（PU）とポリジメチルシロキサン(polydimethyl siloxane, PDMS)がランダムに組合成した化合物であるために分子量一定でないために、試料ホルダーを回転させながら散乱デ
ータを採取した。散乱実験の入射 X 線の波長は、0.154184nm (Kα1)，散乱ピットは0.1mm、受光スリットを0.003mm と絞り込んだ。試料とカウンター間の距離は、500mmに設定した。シート状の試料をホルダーに固定後、散乱角 0.14° ～ 100° の範囲でスクリーニングを行い、試料の強度分布が、散乱角 0.14° ～ 1° の範囲に存在する事を確認した。

3. 計算アルゴリズム

分子力学法と半実験的量子力学計算を用いて分子構造に関する解析を行い、次節の理論的考察の基礎とする[22][25]。

3.1 分子力学法の理論

分子力学法は、ニュートン運動方程式を時間間隔約2フレント秒毎に解くことにより分子構造を決める方法であり、各ステップにおける新しい原子の位置や速度の決定には、ピーマンの運動方程式統合アルゴリズムとプルスの改良係数を採用した。

各原子 (i) の移動量は、

\[x_i = x_i + v_i (\Delta t) + \left(5a_i - a_i^{old} \right) (\Delta t)^2 / 8 \]

ただし、\(v_i \)：速度、\(a_i \)：加速度、\(a_i^{old} \)：前ステップの加速度、(\(\Delta t \)：時間間隔) に関しても同様な差分方程式を考える。また、速度は、

\[v_i = v_i + (3a_i + 6a_i^{old} - a_i^{oldold}) (\Delta t) / 8 \]

で計算される。1 分子が持つ結合エネルギーは、直接結合した原子間の結合伸縮エネルギー、分子鎖の曲げエネルギー、関接原子間のねじれ角回転エネルギー、フェールワールス力、電荷・双極子・四重極子からなる静電相互作用の合計からなる。結合エネルギーは、3次、4次近似モデルを用いて、

\[E = 71.94 \sum_{bond} K_s \left(r-r_0 \right)^2 + C (r-r_0)^3 + Q(r-r_0)^4 \]

\[r = \sqrt{(x-x_{i})^2 + (y-y_{i})^2 + (z-z_{i})} \]

曲げのエネルギーは、6次効果を取り入れて、

\[E = 0.02191418 \sum_{angle} K_s \left(\theta - \theta_0 \right)^2 + F(\theta - \theta_0)^6 \]

捻じれパラメータ (\(\psi_2 \)) を用いると、関接原子間のねじれ角回転エネルギーは、

\[E = \sum_i V_i \left(1 + \cos \phi \right) + V_j \left(1 + \cos 2\phi \right) + V_k \left(1 + \cos 3\phi \right) \]

\[0 \leq \phi \leq \theta \]

で、UVは154184nm (\(\alpha = 7194 \)) とし、他の原子間距離を\(r_{ij} \) とし、分子の誘電率 De を用いると、電荷間相互作用は、

\[E = 336.176 \sum_{ij} e_i e_j / r_{ij} \]

また、双極子一電荷相互作用は、

\[E = 14.388 \sum_{ij} \mu_i \mu_j / r_{ij}^3 (\cos \chi - 3\cos \alpha \cos \alpha_j) \]

双極子一電荷相互作用は、

\[E = 69.120 \sum_{ij} \mu_i \mu_j / r_{ij}^2 \sqrt{D_r D_c} (\cos \alpha_j) \]

と表現される。\(SP^2 \) 混成を形成する原子は、他の結合原子とも共通平面を持つ傾向があるために補正項として、

\[E = \sum_{out of plane} K_s \left[(\theta - \theta_0)^2 + F(\theta - \theta_0)^6 \right] \]

を採用する。結合長と変位の補正は、

\[E = \sum_{Stretich Bond} \frac{1}{2} K_s \left(\theta - \theta_0 \right) \]

で与えられる。これらのポテンシャルを用いて、ジオール、ジイソシアナート、ポリメチルシロキサンなどのセグメントポリウレタンを構成するモノマー有能基に対する半実験的量子計算を行うための初期値と
3.2 半經驗的量子力学的な計算法

セグメンタルポリウレタンのモノマーは、オレフィン性基と、その官能基の電子的特性を予測するために、MOPACを用いた評価を行った。

MOPACは、基軸的な部分は、Hartree-Fock法を用いており、そのアルゴリズムは、シュレディンガー方程式

\[\hat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t} \] (13)

から始まる。ここで、ハミルトニアンを原子単位で用いるとき（\(Z_0 \)：原子番号）

\[H = -\sum_{i} \frac{1}{2} \nabla_i^2 - \sum_{i} \sum_{j} \frac{Z_0}{r_{ij}} + \sum_{i} \sum_{j} \frac{1}{r_{ij}} \] (14)

と表される。この方程式の解はSlater行列で表される。次に1電子分子波動関数を原子軌道関数（基底関数）\(\chi \)の一次結合で近似すれば（LCAO近似）、Slater行列を用いて全電子のエネルギーEの表式を求めるとき

\[\varphi_\mu = \sum_{\mu=1}^m \chi_\mu C_\mu \] (15)

\[E = \int \Psi^* \hat{H}\Psi dv = 2 \sum_{i=1}^n H_{ii} + \sum_{i,j=1}^n (2J_{ij} - K_{ij}) \] (16)

となる。これらのコア積分\(H_{ii} \)，クーロン積分\(J_{ij} \)，交換積分\(K_{ij} \)を原子軌道関数の表式に代え、直交規格化条件を拘束条件とするLagrangeの未定乗数法（未定乗数を\(E_\mu \)）を実行すると、

\[\delta G = \delta \left(E - 2\sum_{i,j} E_{ij}(S_{ij} - \delta_{ij}) \right) = 0 \] (17)

より、Hartree-Fock-ROOthaanの式

\[\sum_{i=1}^n \left(F_{\mu\nu} - E_{ij} S_{ij} \right) C_{\mu\nu} = 0 \] (18)

が得られる。ただし、

\[F_{\mu\nu} = H_{\mu\nu} + \sum_{\lambda} \sum_{\sigma} P_{\lambda}\sigma \left[\langle \mu\nu|\lambda\sigma \rangle - \frac{1}{2} \langle \mu\sigma|\lambda\nu \rangle \right] \] (19)

\[H_{\mu\nu} = \int \chi_\mu^* \hat{h}\chi_\nu dv \] (20)

\[P_{\lambda}\sigma = 2\sum_j C_{\lambda j} C_{\sigma j} \] (21)

\[\langle \mu\nu|\lambda\sigma \rangle = \int \chi_\mu^*(1)\chi_\nu(1)\frac{1}{r_{12}} \chi_\lambda(2)\chi_\sigma(2) dv \] (22)

\[S_{\mu\nu} = \int \chi_\mu^* \chi_\nu dv \] (23)

重なり積分は\(S_{\mu\nu} = \delta_{\mu\nu} \)を課すと、対角化されたエネルギー固有値行列\(E \)は、

\[E = C^{-1}FC \] (24)

で与えられる。この式（33）の展開係数に関して、

\[C_{\mu i} C_{\nu i} S_{\mu\nu} \geq 0 \] (25)

ならば、\(\mu - \nu \)間に結合性があり、逆の時には、\(\mu - \nu \)は反結合性を示すことが分かる。

3.3 計算結果

これまでに示した計算アルゴリズムで、セグメンタルポリウレタンを合成する際に使用される試薬であるジオール、ジイソシアナート、ポリウレタン単量体などの構造や電気陰性度、および、原子電荷などの数値を計算し、以下の写真左側の丸は、原子電荷の大きさを表している。この丸の半径が大きいほど、その原子が大きな原子電荷を持つことを意味している。また、右側の写真は、反応に関与する電子雲の大きさと形状を表現している。

(1) ジオール

ポリウレタンの原料であるジオール

\[\text{[HOCH}_2\text{OCH}_2\text{OCO(CH}_3\text{)}_3\text{COCO(CH}_3\text{)}_2\text{OH]} \] に対して、分子構造の決定、双極子モーメント及び分子軌道を計算した（Fig.8-1）。双極子モーメント3.574 debyeと相当大きく、原子電荷は、酸素原子は、-0.32、炭素は +0.35程度で
あり、エネルギーは、-11.14eVと推定された。主鎖の炭素－炭素間に反結合性の分子軌道が存在している。

(2) ジイソシアナー

芳香族イソシアナー[0CNC6H5CN]に関して上記と同様の計算を行った(Fig.2)。主鍵子モーメントは、0.725 debyeと比較的小さい。原子電荷に関しては、窒素 -3.27, 炭素 -0.395, 酸素の -0.194と比較して大きくなり、エネルギーは、-8.8eVである。この分子は、分子全体に反結合性のπ軌道で占められている。

(3) ポリウレタン単量体

ベンゼン環を含まない構造、例えば構造式が、

[HOCH2CH2OCO(CH3)4COOCH2CH2O2CNH(CH3)2NHCH] のポリウレタン単量体に対して上記の計算を行った。大きな双極子モーメント4.594debyeを持つ。イソシアナーがジオールと結合し環状構造を形成している。酸素 -0.37,窒素 -4.02, 炭素が +0.35程度の原子電荷を持っている。エネルギーは、-10.4eVとなる。イソシアナーがジオールの結合部位を中心として、反結合性の分子軌道が形成されている(Fig.3)。

(4) ポリメチルシロキサン

セグメンタルポリウレタンは、silan coupling agent (SCA) の存在下で共重合反応を起こして合成される。そのため、ジェチルシロキサンの4量体

[CH3Si(OCH3)2CH2CHOCH2CHOCH2CHO(CH3)2OCH3] に関して計算を行った(Fig.4)。双極子モーメントは、1.41であり、水分子よりやや小さい。しかし、原子電荷が、珪素 +1.7であり、酸素の -0.69, 炭素の0.32と比較して極端に大きい。この分子は、多くの反結合性の分子軌道を持ち、エネルギーは-10.7eVと計算された。

(5) ウレタンとジェチルシロキサンの化合物(ベンゼン環を含まない場合)

この化合物の単量体の構造は

[HOCH2CH2OCO(CH3)4COOCH2CH2O2CNH(CH3)2NHCO
O(CH3)Si(OCH3)2OCH2CHOCH2CHO(CH3)2OCH3] として構造を求めた。単量体では、ウレタンとシロキサンの組み合わせ[urethane-siloxane]は、環状構造を形成しない。しかし、この単量体に、ウレタン1分
子が共重合した場合[urethane-siloxane-urethane]す
り、分子内に数個の環状構造が形成される(Fig.5).
さらに共重合が進んだ状態、例えば
[urethane-(siloxane)_x(urethane)_y(siloxane)_z-(urethane)_x]
という状態では、主鎖の所々に環状構造が形成されて
いる。お互いの環状構造を結びつけるように直鎖状の
炭素の共有結合が伸びている。

Fig 5 urethane-siloxane-urethane

(6) ウレタンとジメチルシロキサンの化合物(側鎖に
ベンゼン環を含む場合)の化合物の単量体の構造は
[HOC(CH_2)_CO(CH_2)_COOCH_2CH_2CNH(CH_2)_NHCO(CH_2)_Si(OC_1_2H_5)_2OCH_2CH_2SiPhOCH_2]として構造を求めた。双極子
モーメントは、4.007 と大きさい。珪素 1.74、酸素 1.07、
炭素 0.32 程度の原子電荷を持つ t ちエネルギーは、
-9.58eV と計算された。反結合性の電子雲はベンゼン環
にのみ存在する。

Fig 6 ウレタンとジメチルシロキサンの化合物

(7) ベンゼン環の効果と環状構造形成
側鎖にベンゼン環を持つポリウレタンを考えた。ベンゼ
ン環とジメチルシロキサンが存在しない場合には、ポリ
ウレタンは直鎖状構造をなす。しかし、フェニル基が導
入されること、直鎖は折れ曲がり複雑な環状をなす。ウレ
タンの重合度の増加に伴い、フェニル基が、2～4 個で
クラスターを形成する。このクラスター間を直鎖状の炭
素鎖が結んでいる観察される。

ウレタン分子は、双極子モーメントや原子電荷が大
きく、反結合力の分子軌道に富んでいることが知れた。
特に珪素、窒素、酸素や炭素が大きな原子電荷を持っている。
これらの電気化学的性質により、血薬中のカルシ
ウムや蛋白質と相互作用を起こし、ポリウレタン表面に
吸着・沈着される可能性が示唆される。特に、セグメン
タルポリウレタンを合成する時に用いられる軟化剤と
してのメチルシロキサンの吸着度が大きいと考えられる。
ウレタンの 10 倍体・22 倍体から予想されるように、ポリ
ウレタンは、全体として枠鉄状の塊(枠鉄状分子塊)を
なし、分子塊の内部は、クラスター構造をなす、電子密
度が密な部分と、直鎖構造で構成される疎な領域とは混
在している。X 線散乱実験で捉えられた空間構造を
は、分子構造計算から求められた、枠鉄状分子塊中の環
状構造形成によるクラスターに相当していると考えら
れる。つまり、ベンゼン環の効果を考慮した空間構造が
X 線散乱実験で捉えられたと考えられる(Fig.7).

Fig 7 ベンゼン環を持つポリウレタン10倍体

4. 仮想X線散乱法による計算

我々が提案する仮想X線散乱法とは、分子力学法や
半実験的量子力学的計算法で明らかになった構造物を、
積層をして、仮想的な高分子物質を計算機の上に構築
する。このようにして構成された仮想高分子物質に、
仮想的なX線を照射し、計算機の上で散乱計算を行う
ものである。この散乱X線の強度分布を、先の実験で
得られている慢性疲労実験や動物実験の散乱強度分布図と比較することにより、劣化機序の解明を行った。

4.1 積層の方法

セグメンタルポリウレタンは、構成要素としてシリコンを含んでいる。前節でのシュミレーションにより示されたように、原子電荷や分子軌道等の電気化学的性質が大きいために、直鎖状高分子の形態ではなく複雑に折れた環状構造を形成し、分子全体では片棒状をなし

therefore、そこで、我々は、セグメントポリウレタンの構造を解析するために、代表として前節の例の(7)のポリウレタン22量体を算型モデルとして、分子力学法を用いて、例の(7)のポリウレタンの全ての位置座標を計算した。以後、約30A以上の片棒状の高分子塊に、ランダムに回転を与えるながら、2000A程度になるまで積層した。こうして仮想的に作成された試料をパーカルポリウレタン(VPU)と名づけた。この節の目的は、(1)散乱理論が乱数を運動量移行の関係を導き出すこと、(2)VPUを用いてパソコン上でX線散乱実験を行い、(3)実際の散乱実験データの再現性を検討することにある。

4.2 量子散乱分布法

図（Fig.9）に示されたようにX線が反射をすると、光道相差Δとすれば、位相差は、

$$\Delta \vartheta = \frac{2\pi}{\lambda} (\Delta \lambda) = \frac{4\pi \vartheta z}{\lambda} \equiv A \vartheta$$

ΔL = 2z sin θ ≈ 2zθ

となる。

X線(a)とX線(b)の間での光路差は、図の直角三角形形状の2倍に相当する。

ある波（a）を、波動関数を用いて

$$\psi_a = \phi_0 e^{i(k - \omega t)}$$

と表せば、位相差を持つ波（b）は,

$$\psi_b = \phi_0 e^{i(k \vartheta - \omega t + A \vartheta)}$$

となる。さらに波（b）の物質中での吸収効果を考慮すると、(2)は、(1)より物質中を

$$\frac{2z}{\sin \vartheta} \equiv \frac{2z}{\vartheta}$$

で与えられる。さて、波の重ね合わせには、深さLまでが関与するとして,

$$\Psi = \int_0^L \sqrt{\rho} \psi_a dz$$

$$= \sqrt{\rho} \phi_0 e^{i(k \vartheta - \omega t)} \left\{ e^{(iA - \beta)z} - 1 \right\}$$

波の重ね合わせは、深さLまでが関与するとして,

$$\Psi = \int_0^L \sqrt{\rho} \psi_a dz$$

$$= \sqrt{\rho} \phi_0 e^{i(k \vartheta - \omega t)} \left\{ e^{(iA - \beta)z} - 1 \right\}$$

よって、電荷分布は,

$$|\Psi|^2 = \rho |\phi_0|^2 \left\{ e^{(iA - \beta)z} - 1 \right\}^2$$

$$= \rho |\phi_0|^2 |\phi|^2$$
4.2 解析結果の考察

深度 L が十分大きい場合 ($e^{-\beta L} << 1$) つまり X 線が十分に試料の内部まで入射したならば、式(35)は近似的に

$$\phi^2 \approx \frac{1}{A^2 + \beta^2} \left(\frac{\beta - e^{-\beta L} (\cos AL - \sin AL)}{\alpha \rho / \theta} \right)^2$$

と表現できる。

式(35)の確率部分を実数部と虚数部に分けると、

$$|\phi|^2 = \left(\frac{1}{A^2 + \beta^2} \right)^2 \left(\beta - e^{-\beta L} (\cos AL - \sin AL) \right)^2 + \left(\frac{1}{A^2 + \beta^2} \right)^2 \left(A - e^{-\beta L} (\cos AL + \beta \sin AL) \right)^2$$

$$(35)$$

この関数は、

$$\theta_m = \sqrt{\frac{\alpha \rho \lambda}{4 \pi}}$$

の時、最大値 $\frac{\lambda}{2 \pi \alpha}$, 散乱強度ピーク値 $|\Psi|^2 = \frac{\phi^2}{4 \pi \lambda}$ を持つ。

実際に、この散乱理論で予測されたピークの形成は、岩崎によって行われたセグメンタルポリウレタンの透過型X線回折実験により確認されている[15]。彼等の慢性疲労実験結果によると、荷重によりピーク値が減少し、ピークの位置は全て大角方向への移動を起こしている。この事実は、θ_m, $|\Psi|^2$ を考慮すると、吸収係数 α や電子密度 ρ が増加したと、考えられる。つまり、慢性疲労実験により試料は、試料面方向に引き延ばされたために、逆に深さ方向へ圧縮され、根棒状の高分子塊が互いに接近し、各々の高分子塊は平たく押しつぶされた、と考えられる。同様の結果は、今回の我々の実験での散乱強度・運動量移動量曲線のグラフにおけるハングの大角領域方向への移動（格子間隔の減少）として観察された。また、今回の我々の実験で散乱強度ピークが現れなかったのは、L が十分大きくないためであり、X 線の強度を増加させれば、

$$|\Psi|^2 = \frac{\phi^2}{4 \pi \alpha}$$

で示されるピークが十分に期待される。しかし、実験では、このようなピークが、小角領域で観察されなかったので、$\theta_m \leq 1.2 \times 10^{-3}$ rad, $\lambda = 1.54 \AA$, $\rho = 1/(\text{個/}\AA)$ を θ_m に代入して。吸収係数 α は、$\alpha \leq 1.2 \times 10^{-5}$ と予測される。この時、式(30)の吸収係数より、試料に $Z \sim 5$ ほど入射した所以で、強度は1/6倍に減少することが判明した。

次にX線散乱の実験データとの比較を行い、その結果を考察する。

もし、$\alpha \approx 10^{-5}$ 程度と見積もりれば、

$$A = \frac{4 \pi \theta}{\lambda} = 8.15 \theta, \beta = \frac{\alpha \rho}{\theta} \approx 10^{-5},$$

$$\theta = 1.2 \times 10^{-3} \text{ rad}.$$

この時、$\theta = AL \geq 2 \pi$ では、$\cos AL, \sin AL$ は振動する。すると、理論から最初のハンブは、$\theta = 0.2^\circ = 3.5 \times 10^{-3}$ (rad), $A = 0.025, L_{\nu} \approx \frac{2 \pi}{A} = 224 \AA$ に現れると予測される。この予測値は、コントロールの16番目のハンブ(H16)の出現位置210Aと極めて良い一致を示す。

$$\Phi = \frac{\phi_0}{\lambda^2}$$

Fig. 10 コントロールのフラクタル解析とハンブ(H)

これは、無荷重の状態のセグメンタルポリウレタン(Ⅰ-Ⅲ)のX線回折実験結果に、フラクタル解析を行ったものである。
図の中でH1,H2･･･とハンプに番号が付けられている。

さらにコントロールの測定値を用いて L=800
A, \rho = \frac{1000}{30} と L=1200 A, \rho = \frac{1000}{30} (個/\AA)の
グラフを描いた(Fig.10-1,10-2).

Fig.11 散乱理論の予測値, VPUと実測値
左側の図(Fig.11-1)は, 厚さ800 \AA のセグメンタルポリウレタ
ン膜, そして, 右側(Fig.11-2)は, 膜厚が1200 \AA のセグメ
ンタルポリウレタンの散乱強度分布図である. 実線は, 実
測值, 破線は散乱理論の結果, そして, 積層によるVPUの
結果は, 鎖線で示されている.

上記の2つのグラフは, 解析計算 (散乱理論による計
算・破線, VPUによるシュミュレーション結果・鎖線)
と測定値のグラフ (実線)である, 解析計算のグラフは,
4.7 \leq -Ln(q) \leq 5.8 の範囲で, 測定値のグラフの再現
性が比較的良い. また, 測定値のハンプの追従性は,
L=800 と L=1200 の両者で大差があまり認めら
れない. 従って, 我々の実験に用いたX線の到達深度は,
高々800~1200 \AA 程度であると予想される.

これは, 節4.2でポリウレタンシートの膜厚が十分であ
り, X線の到達深度より大きいという仮定を支持するも
のである.

先の論文のフランクタル次元解析式 [24]−[25] より

Ln(Intensity) = a(-Ln(q)) + b
b = 6.2678a - 8.2168

(39)

そして, VPU法と量子散乱分布法に対して一次回帰直線の
係数を式(39)から求めると, a = 3.0, b = 4.3188となる(Fig.
12). もし, 式(39)より, 係数に近 a = 3.0, b = 10.5666 を
採用すれば, 理論値のグラフは測定結果で実験データの
グラフと一致し, 基礎方程式としての仮想散乱X線法の
式(34), (35)は, 実験データとよく一致する.

特に, 実際のX線散乱実験に基づく静的変形実験（慢性
疲労実験）やコントロール, 動物実験のフランクタル解析
から, a = 3.2, b = 12.0という値を得ている[24]−[25].

Fig.12 スケーリング則

擬Prod 領域に注意し近似式の係数 a と b との間には,
簡単なスケーリング則が成立する. 劣化する過程でも,
一定の形状を維持しながら劣化が進むことを示している.

このことより計算科学の手法からも劣化過程でのスケ
ーリング則の成立が支持される.

また, VPUによる仮想実験結果は, データのグラフを十
分には再現していない. 特に, Ln(q) = 5.8 近傍で, 実
際には存在しない谷が現れている. これは, ランダムに
積層しても, 仮想的な分子膜の寸法が30 \AA 程度であるた
めに, 積層による仮想的物理構造の周期構造が出現した
と考えられる. 再現性の向上には, 積層する分子膜の寸
法を大きくする必要があり, このためにも計算の高速化
は重要な鍵である.

5. 参考文献

理と応用. 要著, pp.1-246, 1993
[9] 菊田達郎, 松浦弘幸, 岩崎清隆, 鎌西雄司, 濱渡邦彦, 阿部裕輔, 井戸宏, 中野正博: 生体適合材料の疲労のX線解析, 第27回医用品分子シンポジウム, pp.5-6, 1998