A LUKEWARM CONSTITUTION OF JAPANESE FIRMS

Nobuo Takahashi

This paper is focused on a lukewarm (“nurumayu” in Japanese) constitution of Japanese firms, which is a typical state of the low-vitality organization in Japan. This study proposes an “effective temperature hypothesis”, which explains that the member’s sense of lukewarm is caused by the difference between the system temperature and the body temperature. The system temperature and the body temperature are defined as the indexes of change inclination of the organizational system and the members, respectively. We develop a method to measure the body temperature and the system temperature, and by using this method, the effective temperature hypothesis is supported by our empirical research on Japanese firms. This hypothesis provides a useful method to examine the degree of vitality of the organization.

1. はじめに
組織の活性化された状態については、既に、高橋（1987）が、Takahashi（1987；1988）に代表される数理的組織設計論から得られる知見を基にして、組織活性化の枠組みを提示しており、さらにその枠組みを基にして、組織の活性化された状態を測定するために、具体的に11図と呼ばれる方法を開発し、その検討・検証を行っている。そこで、この研究では「組織が活性化していない状態」の典型として、いわゆる企業の「ぬるま湯的体質」に着目することにした。ぬるま湯の現象がどのような状態のとき発生しているのか、そして、ぬるま湯的体質が組織の活性化にどのような意味をもっているのかを明らかにするために、本研究は2回の調査と一連の作業を通じて、ぬるま湯感と活性化の関係を説明するための枠組みを提示し、それを調査データに基づいて検証することを目的としている。

それに基づき、本研究では、1987年と1988年の2回の調査を行った。第1回調査は、1987年と1988年の2回の調査を行った。第1回調査は、ぬるま湯的体質に関するの、いわば事実発見を主目的とした調査であり、この第1回調査データから、ぬるま湯感を説明するための枠組みとして「体感温度仮説」が立てられた。これは、湯温として組織のシステムの変化性向を表す指数である「システム温」を考え、これとメンバーの組織としての変化性向を表す指標である「体温」との温度差によってぬるま湯感を説明しようとするものである。

第1回の調査データからこの体感温度仮説は検証されたが、さらに体感温度仮説の追試のために、第2回調査を中間管理職に対象を絞って、企画実施し、この調査によっても体感温度仮説は検証された。また、ぬるま湯感を感じている中間管理職が多いという判明した事実も体感温度仮説によって説明できることがわかった。この枠組みを基にした組織診断法は、第1回調査の調査対象企業によって自ら試みられていて、職場診断の手法としての成果も挙げている。

2. 問題の所在
本研究において、企業のぬるま湯的体質を研究対象に選んだ理由は、それが、組織が活性化していない状態の典型ではないかと考えたからである。それは、「ぬるま湯」現象とはいった状態現象、特に職場内や個人の意義上の現象を表しているのであろうか、また、そもそもぬるま湯的体質とは、組織が活性化していない状態の典型だと考えてしまってしまってよいのであろうか、こうした統一の問題意識に基づいて、ぬるま湯感
についての事実発見を主目的としての第1回調査が企画された。

2.1 調査方法
この調査では調査対象となったのは、日本生産性本部の経営アカデミー「人間力と組織開発」コースの1987年度の参加者の所属企業11社である。調査者は質問票の質問を作成する前のヒアリング調査と、質問票を使って質問票調査の2段階に分けて行われた。

第1段階のヒアリング調査では、1987年6月12〜13の日日に、合宿形式で集中的に1社平均70分程度をかけて、各社の会社概要、組織の特性、問題点、社風などを中心にして、報告、質疑応答等が行われた。さらに、そこで出された問題意識を基にして、各社1人ずつの11人と筆者計12人からなるグループで、相互に何回かのヒアリングを行い、なるま湯現象を典型とする組織の不活性状態を表していると思われる職場内の現象、個人の仕事に対する意識をできるだけ具体的にリストアップしていく作業を行った。この過程で、様々な質問項目がリストに挙げられたが、最終的には筆者がそれらを整理する形で、個人の仕事に対する姿勢に関する25の質問項目（質問Ⅰ〜Ⅴ25）と、職場に関する25の質問項目（質問Ⅰ〜Ⅴ25）の計50項目のリストを作成し、これをYes-No形式の質問にまとめ、さらに個人属性に関する質問Ⅰやそれに準じた一般的質問である質問Ⅱ、Ⅲ、Ⅳも含めて質問票を作成した。したがって、分析の中心となるのは質問ⅣとⅤであり、この質問ⅣとⅤについてはその質問項目を付録に記載している。

調査の第2段階では、各社の職場単位での質問票調査を行った。まず、各社のヒアリング対象者の所属する、もしくはそれに比較的近いホワイト・カラーの組織単位を選び、さらにその中において、一つまたは複数の「職場」を選び、その職場の構成員に対して、原則として、全数調査を行った。調査票に選ばれた11社690人に対して、1987年8月26日（木曜日）に各社一斉に質問票調査が配布され、記入してもらった上で、9月7日（月曜日）までに回収が行われ、580人から質問票が回収できた。回収率は84.1%であった。

2.2 むるま湯感と充実感
そこで、この調査データを基にして、むるま湯現象について考察していくことにしよう。前述の50のYes-No形式の質問項目のうち、ぬるま湯感についての、いわば鍵となる質問：

V25. 職場の雰囲気を「ぬるま湯」だと感じることがある。
について最初にみてみよう。この間には、55.4%がYes、44.6%がNoと答え、ほぼ半数の人がぬるま湯感を感じると答えている。このぬるま湯感については、会社別には有意な関連が見られたが、性別、年齢層別、既婚・未婚別、学歴別、職種別、職位別には有意な関連は見られなかった。また、このぬるま湯感と他の質問項目との関の相関関係をみてみると、職場に関する質問項目（質問Ⅴ系）との相関が高いが、個人の仕事に対する姿勢に関する質問項目（質問Ⅳ系）との相関が全般的に低いという特徴のあることがわかった。このことから、ぬるま湯感は、その人の個人的特性というよりも、会社・職場の特性との関係が深いということがわかった。

しかし、いかに個人の仕事に対する姿勢に関する質問とはいえ、組織の不活性状態を表すと考えていた質問項目との間で相関があまり高くないということは、組織の不活性状態の代表的な現象としてぬるま湯現象を位置付けていた当初の想定に疑問を抱かせる。少なくとも典型的とは言えないのではないかだろうか。

この質問は、調査の第1段階のヒアリングで、組織のメンバーの活性化の重要な指標をしていた質問：

IV24. 自分の仕事に充実感を感じている。
との関連をみると、よりはっきりしておく。この質問に対し、62.0%の人がYes、38.0%の人がNoと答え、ほぼ6割の人が仕事に充実感を感じていると答えている。しかし、この仕事の充実感はぬるま湯感とは異なり、会社別に有意な関連があるだけではなく、性別にみれば男性の方が、年齢層別にみれば高い年齢層の方が、既婚・未婚別にみれば既婚者の方が、学歴別にみれば高学歴の方が、職位別にみれば高い地位のの方が、より仕事の充実感を感じているという有意な関連がみられるのである。しかし、この仕事の充実感は、職場に関する質問項目（質問Ⅴ系）、個人の仕事に対する姿勢に関する質問項目（質問Ⅳ系）、相関がともに高いという特徴のあることもわかった。

この質問IV24は、ぬるま湯感と有意な関連のあった、数少ない個人の仕事に対する姿勢に関する質問の一つで、おそらくその中では一番相関係数の高いもの
以上の調査結果から、当初の想定のように、ぬるま湯を単純に組織の不活性状態における典型的現象として考えることは、かえって不自然に思われるのである。したがって、これ以降、ぬるま湯現象が不活性状態や活性化している状態とどのような関係があるのかを明らかにしていきたい。

3. ぬるま湯感と体感温度仮説

3.1 ぬるま湯とシステム温

そこで、単純に考えてみることにしよう。職場の雰囲気を「ぬるま湯」だと感じるということはどのような現象なのであろうか。岩波書店の広辞苑第3版（1983）によると、「ぬるまゆ（徳温湯）」とは、「温度の低い湯、ぬるい湯」とされ、「ぬるまゆにつかる」は「現実の境遇に甘んじてぬぐくとくす」とされており、さらに、小学館の国語大辞典（1981）によると、「ぬるまゆ（微温湯）」とは、「温度の低い湯、ぬるい湯、ぬるみ、びおんた」とされ、「ぬるまゆにつかる」とは「安らぎな現状に甘んじて香気に過ごす」とされている。

それでは、職場のぬるま湯感を表す際の「温度」とは何を意味しているのだろうか。本研究では、そのヒントを「ぬるまゆにつかる」の意味の中に求めた。つまり、現実に甘んじることなく変化を求める傾向、状態を打破して変化しようとする傾向、これを変化性向と呼び、ここでは、組織のシステムとしての変化性向をまず考え、変化性向が大きければ、「温度」が高く、熱いと感じる、逆に、変化性向が小さければ、「温度」が低く、ぬるま湯と感じると考えるのである。

そこで、前述の50の質問項目のうち、主成分分析の結果も参考にしながら、基本的には論理的に考えて組織のシステムとしての変化性向を表すものと考えられる「あなたの職場に関する」質問Ⅴのかかから、次の5つの質問を選び出した：

V3. 仕事上の前向きの失敗は問わない言う雰囲気がある。

V9. 職場の上司は、その上の上司を動かす力があると思う。

V10. 仕事上の個人の業績、貢献の高い人は、昇進、昇格あるいは昇給などを確実に果たしている。

V14. 今までの仕事の進め方は、今後、変わりそうにない。

V20. 年次さえなければ、ある程度まで昇進できると皆
表2 システムの変化性向とシステム温

<table>
<thead>
<tr>
<th>質問</th>
<th>N</th>
<th>V3 1.YES</th>
<th>V9 1.YES</th>
<th>V10 1.YES</th>
<th>V14 2.NO</th>
<th>V20 2.NO</th>
<th>システム温SINDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A社</td>
<td>19</td>
<td>84.21</td>
<td>84.21</td>
<td>89.47</td>
<td>52.63</td>
<td>89.47</td>
<td>4.00</td>
</tr>
<tr>
<td>2. B社</td>
<td>27</td>
<td>85.19</td>
<td>55.56</td>
<td>37.04</td>
<td>66.67</td>
<td>74.07</td>
<td>3.19</td>
</tr>
<tr>
<td>3. C社</td>
<td>55</td>
<td>56.36</td>
<td>63.64</td>
<td>63.64</td>
<td>43.64</td>
<td>45.45</td>
<td>2.73</td>
</tr>
<tr>
<td>4. D社</td>
<td>18</td>
<td>61.11</td>
<td>50.00</td>
<td>66.67</td>
<td>5.56</td>
<td>66.67</td>
<td>2.50</td>
</tr>
<tr>
<td>5. E社</td>
<td>96</td>
<td>81.25</td>
<td>80.21</td>
<td>68.75</td>
<td>62.50</td>
<td>79.17</td>
<td>3.72</td>
</tr>
<tr>
<td>6. F社</td>
<td>78</td>
<td>64.10</td>
<td>65.38</td>
<td>37.18</td>
<td>41.03</td>
<td>28.21</td>
<td>2.36</td>
</tr>
<tr>
<td>7. G社</td>
<td>65</td>
<td>70.77</td>
<td>61.54</td>
<td>60.00</td>
<td>44.62</td>
<td>49.23</td>
<td>2.86</td>
</tr>
<tr>
<td>8. H社</td>
<td>53</td>
<td>75.47</td>
<td>60.38</td>
<td>69.81</td>
<td>47.17</td>
<td>39.62</td>
<td>2.92</td>
</tr>
<tr>
<td>9. I社</td>
<td>26</td>
<td>92.31</td>
<td>92.31</td>
<td>53.85</td>
<td>88.46</td>
<td>63.38</td>
<td>3.92</td>
</tr>
<tr>
<td>10. J社</td>
<td>40</td>
<td>82.50</td>
<td>82.50</td>
<td>45.00</td>
<td>57.50</td>
<td>47.50</td>
<td>3.15</td>
</tr>
<tr>
<td>11. K社</td>
<td>48</td>
<td>68.75</td>
<td>39.58</td>
<td>52.08</td>
<td>58.33</td>
<td>62.50</td>
<td>2.81</td>
</tr>
<tr>
<td>全体</td>
<td>525</td>
<td>73.33</td>
<td>66.86</td>
<td>57.52</td>
<td>52.00</td>
<td>55.43</td>
<td>3.05</td>
</tr>
</tbody>
</table>

\[ \chi^2 = 26.40^{**} = 44.47^{***} = 38.93^{***} = 44.45^{***} = 70.55^{***} \]

F = 8.80^{***}

便益上「非ぬるま湯」群と呼んで、その両者の間で、システム温についての平均値の差の検定を行ってみた。すると、全体でのシステム温の平均は3.05であったが、「ぬるま湯」群での平均は2.72、「非ぬるま湯」群での平均は3.46と、予想通り、「ぬるま湯」群の方が、システム温が0.1%水準で有意に低いことが確かめられた。

以上のことから、システム温によって、個人のぬるま湯感を説明することは可能である。それでは、このシステム温を用いることで、会社別にみたときのぬるま湯感を説明できるであろうか、つまり企業のぬるま湯感の変化を説明することができるであろうか、会社別のシステム温については、既に、表2に示してあるが、各社のシステム温の平均には0.1%水準で有意な差がみられるものの、11社の中で最もの1社の71.7%の人がぬるま湯感を感じているこの前のC社のシステム温は2.73になってしまって、システム温が特に低いということにはなっていない。したがって、ぬるま湯感を説明するためには、システム温だけではまだ不十分と考えた方がよいようである。また組織のシステム側面に着目するだけでは、C社のような仕事の充実感の高い会社で、なぜぬるま湯感が強いのかを説明することができないことも明らかである。そこで、ぬるま湯感を説明するための新たな枠組みが必要となるのである。
基にしたるま湯感を説明することは、C 社のようなケースには不十分であることがあることがわかった。それでは、どのような説明が考えられるだろうか。C 社のもつ特徴についてもう一度思い起こしてみよう。C 社は 71.7% がぬるま湯と感じている。11 社中最も高かった。仕事に充実感を感じているものも 72.9% と 11 社中 3 番目に高かった会社である。そのことを考え合わせると、ぬるま湯感には、単に組織のシステム側の要因だけでなく、人の側にも原因がありそうである。そこで、次のように考え、仮説を立ててみよう。

生物としての人間の体温は、誰でも約 36～37℃ ではほぼ一定している。だから、システム温度という場の温度を考えて、ぬるま湯感を説明することを自然に思いついたのである。しかし、組織人としての人間の体温は、果して、誰でも、いつでも一定なのかどうか、つまり、C 社のメンバーのような仕事の充実感が高い人は、実は組織人としての体温も高いのではないかだろうか。そして、ぬるま湯と感じるか断熱と感じるかというところは、組織人としての体温をベースとした体感温度の問題ではないだろうか。

ここでいう「体温」とは、組織のメンバーの組織としての変化性向であり、組織のメンバーが現状を打破して、変化をもたらそうとする役割がどのようにあるのかを表す指数と考えられる。一方、「システム温度」とは、既に定義したように、組織のシステムとしての変化性向であり、組織のシステムがメンバーの変化を受け止め、あるいは促す仕組み、制度にどの程度なっているかを表現す指数であった。そこで、組織人としての変化性向として体温（BIINDEX）を考え、この温度とシステム温（SINDEX）との温度差で、ぬるま湯感を説明することを考えよう。つまり、思い切って単純化をして、体感温度（T）を

体感温度 = システム温 - 体温

のように定義し、ぬるま湯感が「体感温度」によって説明できることを考え、次のような仮説を立てることがある。

体感温度仮説：ぬるま湯感を感じる人が多い。体温と感じる人が多い。体温が低い。ぬるま湯感を感じる人が冷帯湯感を感じる人の分布は図 2 のようになる。

実際、この体感温度算出式は、システム温と体温が同一単位で測定されているということを前提のうちに仮定しているが、この仮定については、後で多変量解析によるデータの分析によって説明が行われることになる。そこで、次に検査データを基にして、この体感温度仮説を検証することを考えてみよう。

3.3 検証

体感温度仮説を検証するためには、体温について定めなくてはいけない。そこでまず、システム温と同様にして、主成分分析の結果等も参考にしながら、基本的には論理的に考えて、今度は質問 IV の「あなたの仕事に対する感情への役割に関する」質問の中から組織人としての変化性向を表す質問項目と考えられる、次の五つの質問を選び出した：
IV7. 今の職場では、業績を残すよりも、大きな問題やミスを起こさないようにしたい。

IV8. 自分の仕事については、人との仕事のやり方では満足せず、常に問題意識をもって取り組み、改善することに心がけている。

IV10. 自分の仕事に関する業務知識、専門知識を修得しようと常日頃から心がけている。

IV14. 新しい仕事をどんよりやりたい。

IV25. できれば人よりも早く昇進したいと思っている。

このうち、IV7についてはNo、他のIV8、IV10、IV14、IV25についてYesと答えた方が変化性向が大きいと考えられる。

そこで、SINDEXと同様にして、この五つの質問を基にして、各個人について、IV7についてはYesならば0点、Noならば1点、他のIV8、IV10、IV14、IV25についてはYesならば1点、Noならば0点として点数を与える、ダミー変数化した上で、この五つの質問について点数を合計したものを体温（BINDEX）と呼び、定義し、これによって、組織人としての変化性向をみることにした。

この五つの質問に対する回答とBINDEXを会社別にまとめて表3が得られる。この五つの質問のうち、IV7、IV8については会社別のクロス表に有意な関連がみられたが、他の三つについては5% 水準で有意な関連は見いただされなかった。しかし、各社について体温の平均を求めると、平均においては0.1% 水準で有意な差がみられる。これによると、予想された通り、C社はやはり体温の平均値も4.04と高く、充実感と同様に、11社中3番目に高い値になっている。

そこで、仮説の検証にとりかかれることにしよう。ただし、仮説では、「ぬるま湯」と感じる人と「熱湯」と感じる人がいう分類を用いているが、今回の調査では質問V25しか使うことができないので、「ぬるま湯」「非ぬるま湯」という分類しか用いていることができない。このため「非ぬるま湯」の中に、熱湯だけではなく、「適温」の人を含めていくことが考えられる。そのため、仮説の図2の「ぬるま湯」「熱湯」群ほどには「ぬるま湯」「非ぬるま湯」群が分かれにくい分類が考えられる。

まず、体温を横軸、システム温を縦軸とする散布図にメンバーをプロットしてみよう。その結果は、図3の(A) (B) (C) のようになった。傾向としては、仮説通りの傾向が現れている。ただし、やはり、図2(A)ほどにはきれいに分れていない、実際、図3(C)の分布は仮説の中で「熱湯」としていた位置だけでなく、右上隅にも分布していて、分布の中心はむしろ右上隅の方であり、「非ぬるま湯」群の大部分がいわば「適温」に分類すべきメンバーであったことを示唆している。

さらに、「ぬるま湯」群と「非ぬるま湯」群との、体感温度Tに差が認められるかどうかをみてみよう

<table>
<thead>
<tr>
<th>質問</th>
<th>N</th>
<th>IV7</th>
<th>IV8</th>
<th>IV10</th>
<th>IV14</th>
<th>IV25</th>
<th>体温</th>
<th>体感温度T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A社</td>
<td>19</td>
<td>78.95</td>
<td>94.74</td>
<td>94.74</td>
<td>89.47</td>
<td>47.37</td>
<td>4.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>2.B社</td>
<td>27</td>
<td>74.07</td>
<td>70.37</td>
<td>85.19</td>
<td>85.19</td>
<td>37.04</td>
<td>3.52</td>
<td>-0.33</td>
</tr>
<tr>
<td>3.C社</td>
<td>55</td>
<td>60.00</td>
<td>92.73</td>
<td>92.73</td>
<td>92.73</td>
<td>65.45</td>
<td>4.04</td>
<td>-1.31</td>
</tr>
<tr>
<td>4.D社</td>
<td>18</td>
<td>44.44</td>
<td>83.33</td>
<td>88.89</td>
<td>83.33</td>
<td>44.44</td>
<td>3.44</td>
<td>-0.94</td>
</tr>
<tr>
<td>5.E社</td>
<td>96</td>
<td>56.25</td>
<td>84.38</td>
<td>86.46</td>
<td>88.54</td>
<td>52.08</td>
<td>3.68</td>
<td>0.04</td>
</tr>
<tr>
<td>6.F社</td>
<td>78</td>
<td>41.03</td>
<td>70.51</td>
<td>79.49</td>
<td>83.33</td>
<td>48.72</td>
<td>3.23</td>
<td>-0.87</td>
</tr>
<tr>
<td>7.G社</td>
<td>65</td>
<td>36.92</td>
<td>75.38</td>
<td>84.62</td>
<td>93.85</td>
<td>53.85</td>
<td>3.45</td>
<td>-0.58</td>
</tr>
<tr>
<td>8.H社</td>
<td>53</td>
<td>58.49</td>
<td>58.49</td>
<td>84.91</td>
<td>77.36</td>
<td>47.17</td>
<td>3.26</td>
<td>-0.34</td>
</tr>
<tr>
<td>9.I社</td>
<td>26</td>
<td>92.31</td>
<td>96.15</td>
<td>100.00</td>
<td>100.00</td>
<td>65.38</td>
<td>4.54</td>
<td>-0.62</td>
</tr>
<tr>
<td>10.J社</td>
<td>40</td>
<td>47.50</td>
<td>90.00</td>
<td>97.50</td>
<td>90.00</td>
<td>72.50</td>
<td>3.98</td>
<td>-0.83</td>
</tr>
<tr>
<td>11.K社</td>
<td>48</td>
<td>52.08</td>
<td>58.33</td>
<td>79.17</td>
<td>87.50</td>
<td>47.92</td>
<td>3.25</td>
<td>-0.44</td>
</tr>
<tr>
<td>全体</td>
<td>525</td>
<td>54.29</td>
<td>77.71</td>
<td>86.86</td>
<td>88.00</td>
<td>53.33</td>
<td>3.60</td>
<td>-0.55</td>
</tr>
</tbody>
</table>

\( x^2 = 40.28^{***} / 17.40^* \) F = 4.07\( ^{***} / 3.34^{***} \)
では3.64、「非ぬるま湯」群でも3.56と、両群の間には
体温の平均値に有意な差はみられなかった。次に、体
温温度を計算して求めると、全体での体温温度の平均
値は0.55だが、「ぬるま湯」群での平均は0.91、
「非ぬるま湯」群での平均は0.09と、両群の間には体
温温度の平均値に有意な差があり、仮説
通りに、「ぬるま湯」群の体温温度の方が「非ぬるま湯」
群の体温温度よりも低いことがわかった。

以上のことから、図4のように、「ぬるま湯」群、「非ぬ
るま湯」群両者の相対数度数折れ線を描くより明確に
なり、仮説の図2(B)とはほぼ同じ図が得られる。ただ
し、やはり図2(B)ほどには、はっきりと両群の分布
は分れてはいない。図4には図2(B)との対応の関係
で相対数度数折れ線になっているが、相対数度数折れ線で
はなく、度数折れ線を描くと、「ぬるま湯」群と「非ぬ
るま湯」群の度数折れ線の交差する点が、−1と0の間
にあることから、判別の境界を整数にすると、$T \leq -1$
ならば「ぬるま湯」、$T \geq 0$ ならば「非ぬるま湯」と
判別するとき、誤判別率は200人、誤判別率38.1%と最
小となる。

会社別に体温温度の平均値を求めたものは既に表3
に示してあるが、0.1%水準で会社によって体温温度の
平均値に有意な差のあることがわかる。その中で、ぬ
るま湯感を感じているメンバーの比率が最も高かった
C社の体温温度は一番低くなっている。また会社別に
システム温、体温の平均値を求め、散布図に会社をプ
ロットしてみると、図5のようになり、C社が予想され
た「ぬるま湯」領域にプロットされる。以上のことか
ら、システム温と体温を使って、企業のぬるま湯の体
質をかなり説明することができるということがわか
る。
4. 体感温度算出式の吟味

本稿では、システム温、体温、したがって体感温度も、その算出式における各質問項目（これは、Yes-No形式の質問を0-1形式にダミー変数化してある）を等しいウェイトで単純に加減算したものになっている。ここでは、多変量解析によるデータの分析結果を考慮した上で、等ウェイトで実用上問題が生じないかどうかを検討・吟味してみることにしよう。

4.1 システム温・体温の主成分分析

システム温を算出する基となった質問V3, V9, V10, V14, V20について主成分分析を行ってみると、各主成分に対応する固有値は、1.565、0.969、0.958、0.722、0.735となり、第1主成分だけが1を超えていて、第2主成分以下は固有値の値が急に小さくなっている。したがって、この第1主成分だけをみることにする。第1主成分に対応する固有ベクトルから、各質問項目に対する重み係数を求めると、第1主成分

\[
S_1 = 0.541 \times V3 + 0.531 \times V9 + 0.429 \times V10 + 0.424 \times V14 + 0.247 \times V20
\]

となり、V20に対する重み係数が小さいのであるが、各質問項目に対する重み係数はほぼ一定しているとみることができるであろう。

同様に、体温を算出する基となった質問IV7, IV8, IV10, IV14, IV25について主成分分析を行ってみると、各主成分に対応する固有値は、2.056、0.847、0.769、0.741、0.592となり、第1主成分だけが1を超えていて、第2主成分以下は固有値の値が急に小さくなっている。したがって、この第1主成分だけをみると、第1主成分に対応する固有ベクトルから、各質問項目に対する重み係数を求めると、第1主成分

\[
T_1 = 0.425 \times IV7 + 0.489 \times IV8 + 0.479 \times IV10 + 0.437 \times IV14 + 0.399 \times IV25
\]

となり、各質問項目に対する重み係数は、S1 以上にはほぼ一定したものになっている。

以上のことから、主成分分析によって、もとの変数群のパラッキを最も良く表現するような合成変数 \( S_1, T_1 \) を求め、それを基にして体感温度の分析を行ったとしても、等ウェイトの場合とそれほど異なる結果になるとは考えにくい。

実際、システム温、体温、体感温度を以上の第1主成分の重み係数を使って計算し直した上で、「ぬるま湯」・「非ぬるま湯」群の間での平均値の差の検定を行うと等ウェイトの場合と同様の結果が得られ、また会社別に \( S_1, T_1 \) の平均値をとって散布図に会社をブロックしてみても、2本の平均値線によって区切られた4つの領域に属する会社の構成は変わらず、やはり等ウェイトの場合と同様な結果が得られる（高橋, 1988）。

4.2 「ぬるま湯」群・「非ぬるま湯」群の判別分析

次に、システム温の算出に用いたV3, V9, V10, V14, V20の質問Vの5問、体温の算出に用いたIV7, IV8, IV10, IV14, IV25の質問IVの5間の計10問を基にして、質問V25の「ぬるま湯」群と「非ぬるま湯」群の判別分析を行ってみた。その結果得られた線形判別関数は次のようにになった。

\[
u = -1.125 + 0.153 \times V3 + 0.401 \times V9 + 0.589 \times V10 + 0.414 \times V14 + 0.956 \times V20 - 0.230 \times IV7 - 0.144 \times IV8 - 0.150 \times IV10 - 0.237 \times IV14 - 0.094 \times IV25
\]

この線形判別関数を基にして \( u \) を計算し、\( u < 0 \) のとき「ぬるま湯」、\( u > 0 \) のとき「非ぬるま湯」と判別するようにすることになる。

システム温を計算するのに用いた質問Vの各質問項目に対応している係数はV3, V20で多少ばらっているが、符号はすべて正である。他方、体温を計算するのに用いた質問IVの各質問項目に対応している係数はIV10を除いてすべて負となっており、その大きさもばらさないと考えられてきそうである。このように、質問V系には正、質問IV系にはほぼ負という係数の符号が得られたことで、「体感温度＝システム温」というものに従っている。
テム温-体温」によってぬるま湯感をとらえようとした本研究での試みが、かなり的を得たものであったこと、判別分析の結果からも確認されたと考えられる。

実際、この線形判別関数を用いたときの判別結果、誤判別率は187人、誤判別率は35.6%となっていて、誤判別率がかなり高い。したがって、システム温、体温を等ウェイトで求めたときの誤判別200人、誤判別率38.1%も判別力が低かったが、この判別分析の結果と比較すると、本研究での方法が多少なりとも有効なものであったことがわかる。

以上のことから、体感温度の算出式を等ウェイトに設定していても、実用上は問題なく、今回のデータで見られる、多変量解析の結果ともかなりよろ部分を含むのであることが明らかになるから、体感温度仮説の妥当性もある程度確認された。

5. 中間管理職を対象とした追試

このように、第1回の調査によって、裏付けられた体感温度仮説が、より一般的に妥当性をもつものであるかどうかを確認するために、1988年に第2回の調査が企画、実施された。この調査は、体感温度仮説を中間管理職を対象として、体感温度仮説を中心にしてより広範な枠組を検証するために企画されたものだが、ここでは追試部分についてのみ述べるためにとどめ、詳細については高橋（1988）を参照された。

第2回調査で調査対象となったのは、第1回調査と同様に、日本生産性本部の研究アカデミー「人間能力と組織開発」コースの今度は1988年度の参加者の所属企業8社である。調査は第1回調査と同様の手続きを踏んで行われたが、調査の第2段階では、第1回調査とは異なり、調査対象者は中間管理職の者に限定して各社の職場単位での質問票調査を行った。まず、各社のヒアリング対象者の所定する、もしくはそれに比較的近い組織単位を選び、さらその中で、一つまたは複数の「職場」を選び、その職場の中間管理者に対して、原則として、全社数が調査を行った。調査対象に選ばれた8社・770人に対して、1988年8月31日（水曜日）に各社一斉に質問票調査票が配布され、記入してもらった上で、9月5日（月曜日）までに回収が行われ、626人から質問票調査票が回収できた。回収率は83.3%であった。

第2回調査では、ぬるま湯感についての質問「職場の雰囲気を「ぬるま湯」だと感じることがある」に対しては、69.7%がYes、30.3%がNoと言えている。これは第1回調査でYesが55.4%、Noが44.6%とほぼ半数がぬるま湯感を感じていたことと比べると、ぬるま湯感を感じている人が7割という高いレベルになっている。このように、中間管理職によるぬるま湯感が高いということは、一見不思議だが、このことは、体感温度仮説によってうまく説明することができる。実際は第1回調査のデータを比較すると、第2回調査のデータは、温調の分布が4と5で偏りすぎしていて、体調が4が33.8%で、この両者だけで77.5%も占めている。これは第2回調査の中間管理職だけを対象としたために、中間管理職が一般に体温が高く、現状を打破しようとという意図をもっているという事実を反映したものと考えられる。このことはヒアリングの段階から十分に予想されていたことであった。このために、第2回調査では、体温はほぼ上限に張り付いてしまい差がほとんどなく、「ぬるま湯」群と「非ぬるま湯」群の違いは、システム温の違いだけのようにみえる分布になってしまった。

しかし、システム温だけではぬるま湯感を説明しようとすると、第2回調査だけに限定すればぬるま湯感の説明はつかれるのだが、第1回調査との比較において、なぜこのような高水準のぬるま湯感が存在するのかということを説明することができない。実際、第2回調査のシステム温の平均値は3.06で、第1回調査のシステム温の平均値3.05とはほぼ同じであり、システム温だけによって第2回調査の中間管理職の高水準のぬるま湯感を説明することはできないのである。しかし、体感温度仮説によれば、2回の調査でシステム温の平均はほぼ同じなので、第2回調査の中間管理職の場合には、体温の平均が4.09と、第1回調査の3.60を大きく上回っていたために、体感温度が低下し、その後、7割がぬるま湯感を感じることになり、説明することができるのである。

さらに、システム温、体温をもとにして体感温度を計算して求めてみても、「ぬるま湯」群では-1.19、「非ぬるま湯」群では-0.66と、体感温度の平均値に0.1%水準で有意な差があり、仮説通りに、「ぬるま湯」群の体感温度の方が「非ぬるま湯」群の体感温度よりも低いことがわかった。

また第1回調査と同じ、T<0ならば「ぬるま湯」、T>0ならば「非ぬるま湯」と判別する基準を採用してみると、誤判別235人、誤判別率38.6%となっている。これは第1回調査の誤判別率38.1%をほとんど同水準であり、体感温度による判別は安定していることが
わかる。
以上のことから、中間管理職のように体温が高い調査対象の場合であっても、体感温度仮説によって、ぬるま湯感を説明できることが確認された。

6. 結びにかえて
この研究では2回の調査を受けて、システム温と体温の差によってぬるま湯感を説明する体感温度仮説を立て、それを検証することによって、ぬるま湯現象にあるものをかなり解明できたと考えている。
しかし、組織や職場の状態をぬるま湯感や体感温度だけで判断することには盲点もあることに注意しなければならない。なぜなら、同じ水温の体感温度をとらえシステム温と体温の組み合わせには定まりず、システム温、体温が共に高めても、共に低めても、同じ体感温度になるからである。

図2(A)で考えれば、体感温度曲線は、体感温度を表す右下がりの直線への垂直な直線となるはずである。したがって、例えば、図の右上隅も左下隅も体感温度では0に訪れ、差がないことになる。しかし、この両者の違いは重要かつ重大である。右上隅の組織のシステム温も人も変化性が大きく、システム・人が一体となって変化することを指向した組織であるのに対して、左下隅の組織のシステム温も人も変化性が小さく、組織のシステムが現状に甘んじることを肯定しているだけではなく、そのメンバーも現状に甘んじることで体に染み入っているために、そうしたシステムの状況に気が付いていないという危険な状態にあると考えられる。

このことは、組織や職場の状態を、その中にいるメンバーの「感じ」だけで判断してはしないことの危険性を示唆している。例えば、適温、いい湯だと思われる風呂が長く浸かっていると、浴（システム）の温度は自然に下がってしまう。明らかに、本人の体温もそれにつれて低下していくため、その温度に気付かず、いつしか平気で風呂の中に浸かり、そのうち風邪をひってしまうということが、十分に考えられるのである。

これと類似の現象が、経営学の領域で、Tichy & Devanna（1986）によって「ゆでカエル現象」（boiled frog phenomenon）として指摘されている。この現象はもともとカエルが主役の古典的な生理学的反応実験のアナロジーなので、温度の高低の設定は逆になっているが、カエルを突然熱湯に入れると、カエルはすぐに飛び出すが、カエルを冷水の鍋の中に入れて、ゆっくり熱を加えていければ、温度の変化がゆっくりなので、カエルは熱湯になっていないことに気付かず、飛び出すことなく、鍋の中でゆで上がって死んじてしまうという現象を指している。米国の鉄鋼、自動車などの産業はこの現象の犠牲者だったというのである。本研究での体感温度仮説においては、体感温度の概念を定義し、操作化することで、こうした指摘を明るかにする教訓としてではなく、論理として議論の対象として提示することにより、ある程度成功していると考えることができる。

以上のことを明らかに、体感温度よりも、この体温を経軸、システム温を横軸にとった図6のような図の上で位置の方が重要ではないかということになる、既に試験的にこの図を用い、会社単位で職場間の比較を行ったケース研究が、第1回調査の調査対象企業の担当者らの手によって試みられていて（森本他、1988）、そこでは、図6に体温、システム温の平均を破綻で入れたものが、使用されている。これらの一連のケース研究では、便宜上、上上の領域を「適温」領域、左下の領域を「水風呂」領域と呼んでいるが、この名称は、前述の体感温度の盲点に関する考察をもとにすると、概ね妥当なものと考えられる。

ただし、システム温が体温をはるかに下回る状態や、システム温が体温をはるかに超えた状態というのは、短期的にはありえても、定常状態としてはありえないと予想することができる。ゆでカエル現象でも、カエルはゆで上がってしまわないのである。実際、図3では「非ぬるま湯」群の大部分は適温領域に分布し、水風呂領域や熱湯領域にはあまり分布していないという
事実は、この予想を裏付けるものといえる。

図6において重要なことは、本来、活性化していると呼ばれる状態は通過の状態であり、一方、本来、活性化していないと呼ばれる状態は水風呂の状態であり、ぬるま湯の領域はどちらとも異なるということである。つまり、調査データの分析過程で疑問を感じた通り、やはり、ぬるま湯の状態は不活性状態の典型というわけではないかったことになる。

謝辞

調査データの収集にあたっては、財団法人日本生産性本部経営アカデミーの協力があり、その募集・処理にあたっては、財団法人二十一世紀文化財団の昭和61年度学術奨励金（研究題目：『日本企業の行動特性の理論的・実証的分析』）の援助がそれぞれ得られた。また、会計員の方々からは有益な御教示をいただいた。ここに記して謹意を表したい。

付録

IV あなたの仕事に対する姿勢に関する次の各質問について、Yes（該当する）、No（違う）のどちらか近いと思われる方一つを選んで〇をつけていて下さい。

1. トップの経営方針と自分の仕事との関係を考えながら仕事をしている。
2. 会社における自分の立場、役割を常に考えて仕事をしている。
3. 5年後、10年後の会社の中での自分の立場、役割を考えて仕事をしている。
4. 自分の与えられた仕事以外でも、必要があれば対処するようにしている。
5. 自分の仕事でも最終的な意思決定責任は、直属上司など誰か他の人ににあると思う。
6. 自分の仕事に関する決断、決定は、一応、上司もしくは同僚に相談しながらやっている。
7. 今の職場では、業績を残すよりも、大きな問題やミスを起こさないようにしていきたい。
8. 自分の仕事については、人並の仕事のやり方では満足せずに、常に問題意識をもって取り組み、改善するように心がけている。
9. 職場の他の人がどんな仕事をするのをどんなやり方でしているかに関心がある。
10. 自分の仕事に関する業務知識、専門知識を修得しようと日常頃から心がけている。

11. 「この仕事は人間がかまわせられない」という仕事がある。
12. 自分の仕事はプレイドをもって取り組んでいる。
13. 自分が信念を持ってやっている仕事は、上司が反対しても、やり遂げようと努めている。
14. 新しい仕事をどんどんやりたい。
15. 自分の年収はその会社に比べて高いと思う。
16. 自分の時間があれば、給料に見合う仕事をしているかと問いかけた経験がある。
17. 会社の発展のためには自分の私生活が犠牲になってもかまわないと思う。
18. 自分が頑張らないと、上司、同僚が頑張っているので、職場の業務遂行や業績には心配はいらない。
19. 残業を前提にして、昼間仕事をしていることがある。
20. 同僚他社の業績不振はやり方がまずいせいだと思う。
21. 自分の会社の経営が頼重はまずいないと思う。
22. 自分は会社を辞めても食っていると思う。
23. 会社の将来が悲観的になったとしても、この会社に留まりたいと思う。
24. 自分の仕事に充実感を感じている。
25. できれば人よりも早く昇進したいと思っている。

V あなたの職場に関する次の各質問について、Yes（該当する）、No（違う）のどちらか近いと思われる方一つを選んで〇をつけていて下さい。

1. 職場は居心地がよい。
2. 言いたいことは何でも言える雰囲気がある。
3. 仕事上の前向きの失敗は問わないという雰囲気がある。
4. 人が困っているとき、悩んでいるときには公私にかかわらず、助け合う気持ちがある。
5. 職場のリクレレーション等には業務上支障がない限りほとんど人が参加する。
6. 職場の雰囲気は明るい。
7. 職場での会議、打ち合わせ等が効率良く運営できるように互いに心がけている。
8. 職場の上司は部下一人一人の仕事の目標、計画を明確にした上で、適宜、進捗状況、反省点の確認、助言をしてくれる。
9. 職場の上司は、その上の上司を動かす力があると思う。
10. 仕事上の個人の業績、貢献の高い人は、昇進、昇
格あるいは昇給を確実に果たしている。
11. 担当者が誰であるか不明確な領域の仕事が発生した場合には、トラブルが起こることがある。
12. 仕事上の問題が発生した場合には、最終的な責任の所在が明らかになっていない。
13. 仕事の期間が多少遅れても、今まであまり問題になかったことではない。
14. 今までの仕事の進め方は、今後、変わりそうにない。
15. 仕事の進め方など仕事上のことで疑問に思ったこと、分からないことを聞きたくても、誰に聞きれば良いか分からないことがある。
16. 事務用品の使用に公私の区別があまりない。
17. 必要以上に長電話をかけている人がいる。
18. 仕事中に無駄話が多いと思う。
19. 上司の指示に対し、できない理由を考える傾向が強い。
20. 年次さえ来れば、ある程度まで昇進できることは思っている。
21. 会社を収入を得るためのところだと割り切っている人がいる。
22. 会社で購入する場合には、必要最低限の品物よりも多少は良い品物、高い品物を買っている。
23. 仕事の密度の薄いと思われる日が時々ある。
24. 女子社員も重要な仕事を分担していると思う。
25. 職場の雰囲気を「ぬるま湯」だと感じることがある。

参考文献
青木 昭也 (1988)「体感温度に関する組織活性化対策」、昭和62年度経営アカデミー 人間能力と組織開発コース グループ研究報告書（財）日本生産性本部、pp.103-151。
高橋伸夫（1987）「組織活性化の比較研究法」、『組織科学』Vol.21, No.2, pp.54-63。
高橋伸夫（1988）「経営の「ぬるま湯」的体質の調査研究」、 Discussion Paper TM & ARG-13、東北大学経済学部。