Estimating cognitive function in elderly people using information from outdoor walking

Akihiro SUZUKI*, Kenichi TAKAHASHI**, Yasuaki OHTAKI***, Kenji KAMIJO****, Tadatoshi INOUE***** Misako NOTO****** and Takashi NAKAMURA*******

* National Institute of Technology, Ichinoseki College
 Takanashi, Hagisho, Ichinoseki-shi, Iwate 021-8511, Japan
 E-mail: asuzuki@ichinoseki.ac.jp

** Department of Bioengineering and Robotics, Tohoku University
 6-6-04 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

*** Department of Clinical Engineering, Kanagawa Institute of Technology
 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan

**** Faculty of Rehabilitation Sciences, Nishikyushu University
 4490-9 Osaki, Kanzaki-machi, Kanzaki-shi, Saga 842-8585, Japan

***** Minami Day Service Center
 3-1-31 Tsutsujigaoka, Ono-shi, Fukuoka 816-0962, Japan

****** Faculty of Health and Welfare, Seinan Jo Gakuin University
 1-3-5 Ibori, Kokurakita-ku, Kitakyushu-shi, Fukuoka 803-0835, Japan

******* Faculty of Education, University of Teacher Education Fukuoka
 1-1 Akamabunkyo-machi, Munakata-shi, Fukuoka 811-4192, Japan

Abstract

The rapid increase in the aging population of Japan is becoming a serious social concern, and the number of elderly individuals with dementia is also increasing. The Ministry of Health, Labour and Welfare of Japan has reported that the elderly account for 4.62 million individuals, of which approximately 4 million have mild cognitive impairment (MCI). However, monofunctional disorders, such as those in individuals with MCI, can be treated, with patients recovering 44% of their abilities 2 years after treatment, thereby suggesting that early detection and treatment of dementia is important. It has been reported that individuals who walk slowly or have experienced a significant decline in walking speed with age have a higher risk of developing dementia. In this study, to study movement in individuals aged ≥ 60 years, we focused on walking, a basic activity of daily living. We proposed and evaluated novel methods to estimate cognitive function. Acceleration and angular velocity sensors were attached to the waists of 20 elderly participants who were asked to walk outdoors ordinarily for 5–10 min, during which acceleration and angular velocity were measured. The similarity, standard deviation, and period of the stride were determined from the acceleration waveform and angular velocity waveform during walking. These were used as independent variables, and multiple regression analysis was performed using the Mini-Mental State Examination (MMSE) score as a dependent variable. An MMSE score estimation equation was constructed. The relationship between the estimation formula and the actual test value was $R^2 = 0.773$ ($P < 0.01$), which was good. As a result of cross-validation, the root mean square (RMS) error is low and the error is neither fixed nor proportional. Using the body acceleration and angular velocity information when walking outdoors, we built a very accurate formula for estimating the MMSE score.

Keywords: Dementia, Walking, Elderly, Mild cognitive impairment (MCI), Motoric cognitive risk (MCR), Mini-Mental State Examination (MMSE)
1. Introduction

The rapid increase in the aging population of Japan is becoming a serious social concern, and the number of elderly individuals with dementia is also increasing. The Ministry of Health, Labour and Welfare has reported that the elderly comprise 4.62 million individuals, of which approximately 4 million have mild cognitive impairment (MCI). The prevalence of dementia among individuals aged ≥ 65 years is estimated to be 15.0% (approximately one in seven individuals develops dementia). The primary symptoms of dementia include memory disorders, disorientation, and dysfunctional behaviors. Examples of the behavioral and psychological symptoms of dementia include wandering, depression, hallucinations, and insomnia. However, monofunctional disorders, such as those in individuals with MCI, can be treated, with patients recovering 44% of their abilities within 2 years after treatment. Thus, early detection and treatment of dementia is important. In a recent study focusing on the motor functions of patients with dementia, Verghese et al. (2014) investigated the association between the prevalence of motoric cognitive risk (MCR) syndrome and the risk of dementia using the data of 26,802 adults aged ≥ 60 years. They found that MCR syndrome was prevalent in 9.7% of individuals in the target group. In addition, these studies have found MCR syndrome to be an initial symptom of declining cognitive function. Moreover, in a longitudinal study of 3,932 individuals aged ≥ 60 years, Hackett et al. (2018) found that individuals with a slow or a significant decline in walking speed with age had a high risk of developing dementia. In addition, Trienke et al. (2012) conducted a study on dual task gait. They reported that elderly with dementia observed irregular patterns with varying stride length and time for each stride compared to healthy elderly.

In recent years, inexpensive inertial sensors (acceleration and angular velocity) have been installed in smartphones using MEMS (Micro Electro Mechanical Systems) technology and are becoming popular as wearable sensors. By using inertial sensors (acceleration and angular velocity), it is possible to estimate the walking speed and stride using the acceleration standard deviation and stride period as parameters (Akihiro et al. 2011). For walking variability, the waveform similarity of acceleration and angular velocity during walking can be used. Therefore, if the cognitive function can be estimated from the walking information of the elderly using an inertial sensor, it can be used as a new function of the health care system, leading to the early detection of dementia. In this study, we evaluated novel methods for estimating cognitive function in individuals aged ≥ 60 years by focusing on walking, a basic movement for the activities of daily living.

2. Modeling to estimate the cognitive function

To estimate cognitive function from observations of the gait in the elderly, we used acceleration and angular velocity sensors attached to the waist to determine the waveform similarity, standard deviation, and stride cycle during walking. We then used these parameters to estimate cognitive function using the following equation involving the Mini-Mental State Examination (MMSE) score, which is a screening test for assessing dementia impairment.

\[
\text{MMSE Score} = \alpha_0 \cdot Y_a + \alpha_1 \cdot Y_\omega + \alpha_2 \cdot \sigma_a + \alpha_3 \cdot \sigma_\omega + \beta_0 \cdot T + \beta_1
\]

where \(Y_a \) is the acceleration waveform vector similarity, \(Y_\omega \) is the angular velocity waveform vector similarity, \(\sigma_a \) (G) is the acceleration waveform vector standard deviation, \(\sigma_\omega \) (degrees/s) is the angular velocity waveform vector standard deviation, and \(T \) (s) is the stride period. The coefficients \((\alpha_0, \beta_0) \) were determined by conducting multiple regression analysis using experimental data, with the MMSE score as the dependent variable and each parameter as the independent variable. The independent variable is a vector value (with three components in the X, Y, and Z directions) that excludes the stride period and has 13 types \([Y_a(3\text{types}), Y_\omega(3\text{types}), \sigma_a(3\text{types}), \sigma_\omega(3\text{types}), \text{and } T(1\text{type})]\); it is then selected and optimized such that the degree-of-freedom adjusted coefficient of determination is maximized. IBM SPSS Statistics Ver. 23 for Windows was used for this analysis.

The method of calculating the cognitive function estimation parameter in Equation (1) is shown. Since acceleration and angular velocity data include offset components and high-frequency noise, smoothing and offset components are first removed using a bandpass filter (IIR Butterworth BPF with 0.1 – 40 Hz pass band). The similarity of the waveform is a measure of the acceleration waveform or angular velocity waveform of one step as an evaluation of walking stability. Figure 2 shows the vertical acceleration of the acceleration sensor attached to the waist during walking. Because one peak value appears per step due to heel-contact when walking, the waveform of one stride was cut out. The average in
the walking section of this peak interval was considered as one stride cycle. The extracted stride waveform W_j [Equation (2)] was linearly interpolated to comprise 100 points. The cross-correlation coefficient γ_j [Equation (4)] between this and the average waveform W_{mean} [Equation (3)] was obtained. j is the stride number ($j = 1, 2, \ldots, m$), and s is the sth data string ($s = 1, 2, \ldots, 100$). In this study, this cross-correlation coefficient was used as the walking waveform similarity. In addition, because acceleration in the horizontal and front-back direction was small and multiple peak values appeared in one stride, one stride waveform was extracted based on the peak position of the acceleration waveform in the vertical direction, and the waveform similarity was calculated. As for the angular velocity waveform, one stride waveform was extracted based on the peak position of the vertical acceleration waveform, and the waveform similarity was calculated.

\[
\{W_j(s)|s = 1, 2, \ldots, 100\} \quad (2)
\]

\[
W_{mean}(s) = \frac{1}{m}\sum_{j=1}^{m}W_j(s) \quad (3)
\]

\[
\gamma_j = \frac{\langle W_j, W_{mean}\rangle}{|W_j||W_{mean}|} \quad (4)
\]

3. Experiment

3.1 Subjects

The Subjects included 20 healthy elderly individuals (4 men and 16 women) with a mean age of 76 (63–82) years who could independently walk without using walking aids. The median MMSE score was 27 (range, 23–30; Table 1). This study was approved by the National Institute of Technology, Ichinoseki College Ethics Committee. Signed informed consent was obtained from each subject (and family members, where applicable) after detailed information about the study was provided.

3.2 Experimental method

A wireless motion sensor (GPS+9-axis wireless motion sensor, SPORTS SENSING Co. Ltd, Japan, Table 2) affixed to a waist belt was attached to the waist at the third lumbar vertebra, which is considered to reflect the acceleration of the center of gravity the most (Osaka et al. 2011), to measure the walking state of the participant (Figure 1). The waist belt can be in close contact with the body, and measurement data errors due to clothing displacement can be prevented. Triaxial acceleration and triaxial angular velocity were measured. The walking speed was that of free walking, and each participant was instructed to walk at a normal pace. Immediately after the start of walking, the muscles and joints were considered to be hard; thus, 3 min after the start of walking, linear walking data over a 20-s-period was extracted and used for analysis. Positional information during walking was acquired using GPS, and acceleration and angular velocity were simultaneously measured. The walking route was confirmed on a map, and the straight walking section was
extracted. From the measured triaxial acceleration and triaxial angular velocity data, the waveform similarity, standard deviation, and stride cycle were obtained and used as parameters for analyzing cognitive function. As shown in Figure 1, the sensor’s axial directions are the x-axis in the vertical direction, the y-axis in the left–right direction, and the z-axis in the front–rear direction. The subjects in this experiment were healthy elderly people, and none of the lumbar segment axes were tilted due to senile round back. Therefore, each axis is not corrected to the absolute coordinate system based on gravity.

We also measured the cognitive function of the participants using the MMSE, which was developed by Folstein et al. (1975). The MMSE is composed of 11 questions related to orientation, calculation, language, figure reproduction, etc., and evaluates cognitive function with a maximum score of 30. The lower the total score, the more likely it is that the patient has dementia. MMSE scores of 26–29 denote suspected dementia, 21–25 denote mild dementia, 11–20 denote moderate dementia, and 0–10 denote severe dementia (Perneczky R et al., 2006). The median MMSE score of the participants assessed in this study was 27 (23–30) (Table 1), and the group comprised individuals with suspected-to-mild dementia.

4. Result and Discussion

Table 3 shows the average, standard deviation, and maximum and minimum values for the cognitive function estimation parameters calculated from the experimental results. Multiple regression analysis was performed with the MMSE score as the dependent variable and each cognitive function estimation parameter as the independent variables. The MMSE estimation formula shown in Equation (5) was obtained. The variable γ_{oy} in Equation (5) is the angular velocity waveform similarity around the y-axis, σ_{ax} and σ_{az} are the acceleration standard deviations in the x- and z-
Table 3 The measured parameters for estimating the cognitive function of the participants

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity of walking acceleration waveform x</td>
<td>0.923</td>
<td>0.070</td>
<td>0.986</td>
<td>0.754</td>
</tr>
<tr>
<td>y</td>
<td>0.814</td>
<td>0.186</td>
<td>0.964</td>
<td>0.342</td>
</tr>
<tr>
<td>z</td>
<td>0.877</td>
<td>0.098</td>
<td>0.977</td>
<td>0.638</td>
</tr>
<tr>
<td>Similarity of walking angular velocity waveform x</td>
<td>0.630</td>
<td>0.102</td>
<td>0.879</td>
<td>0.491</td>
</tr>
<tr>
<td>y</td>
<td>0.430</td>
<td>0.165</td>
<td>0.820</td>
<td>0.232</td>
</tr>
<tr>
<td>z</td>
<td>0.484</td>
<td>0.169</td>
<td>0.845</td>
<td>0.230</td>
</tr>
<tr>
<td>Standard deviation of walking acceleration waveform (G) x</td>
<td>0.263</td>
<td>0.062</td>
<td>0.368</td>
<td>0.172</td>
</tr>
<tr>
<td>y</td>
<td>0.187</td>
<td>0.069</td>
<td>0.363</td>
<td>0.103</td>
</tr>
<tr>
<td>z</td>
<td>0.226</td>
<td>0.059</td>
<td>0.323</td>
<td>0.142</td>
</tr>
<tr>
<td>Standard deviation of walking angular velocity waveform (degree/s) x</td>
<td>15.394</td>
<td>3.977</td>
<td>27.787</td>
<td>9.350</td>
</tr>
<tr>
<td>y</td>
<td>18.613</td>
<td>13.215</td>
<td>43.031</td>
<td>6.348</td>
</tr>
<tr>
<td>z</td>
<td>13.068</td>
<td>4.733</td>
<td>23.823</td>
<td>6.329</td>
</tr>
<tr>
<td>Stride cycle (s)</td>
<td>1.050</td>
<td>0.155</td>
<td>1.482</td>
<td>0.867</td>
</tr>
</tbody>
</table>

Table 4 Coefficients of Equation (5)

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standardized coefficient</th>
<th>p value</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>18.603</td>
<td>-</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>Similarity of angular velocity y: γ_{ay}</td>
<td>7.884</td>
<td>0.596</td>
<td>0.002</td>
<td>1.316</td>
</tr>
<tr>
<td>SD of acceleration x: σ_{ax}</td>
<td>29.079</td>
<td>0.821</td>
<td>0.005</td>
<td>3.383</td>
</tr>
<tr>
<td>SD of acceleration z: σ_{az}</td>
<td>-60.586</td>
<td>-1.632</td>
<td>0.000</td>
<td>5.689</td>
</tr>
<tr>
<td>SD of angular velocity x: σ_{ax}</td>
<td>0.166</td>
<td>0.303</td>
<td>0.043</td>
<td>1.045</td>
</tr>
<tr>
<td>SD of angular velocity y: σ_{ay}</td>
<td>0.228</td>
<td>1.381</td>
<td>0.000</td>
<td>2.899</td>
</tr>
<tr>
<td>Stride cycle: T</td>
<td>4.172</td>
<td>0.295</td>
<td>0.100</td>
<td>1.590</td>
</tr>
</tbody>
</table>

Table 5 Coefficient of determination of Equation (5)

<table>
<thead>
<tr>
<th>R</th>
<th>R^2</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.879</td>
<td>0.773</td>
<td>0.669</td>
</tr>
</tbody>
</table>
axes, σ_{ax} and σ_{ay} are the angular velocity standard deviations around the x- and y-axes, and T indicates the stride period. Table 4 shows the coefficients and standardized coefficients of Equation (5), and Table 5 details the coefficients of determination and coefficients of adjustment with adjusted degrees of freedom. Figure 4 indicates the relationship between the MMSE score estimated by Equation (5) (MMSE_{est}) and the MMSE score measured by the schooling test (MMSE_{mes}).

$$\text{MMSE Score} = 7.884\gamma_{wy} + 29.079\sigma_{az} - 60.586\sigma_{ax} + 0.166\sigma_{ax} + 0.228\sigma_{wy} + 4.172T + 18.603 \quad (5)$$

As shown in Figure 4, the relationship between the estimation formula and the actual test value was $R^2 = 0.773$ ($P < 0.01$), which was good. However, cross-validation was performed using leave-one-out (LOO) cross-validation to verify the generalization of the estimation equation (Zanconato et al., 1991). Using LOO, one participant’s data are extracted from all participants’ data for test data and the rest are treated as training data. Then, using the test data extracted in advance, the estimation model constructed from training data is verified, and the verification method is repeated for the number of participants while exchanging training and test data. As a result of verification, the root mean square error was 1.01. This was associated with the resolution of the MMSE scores; it was then confirmed that Equation (5) had generalization performance. Next, error analysis was conducted using the derived Equation (5) using Bland and Altman analysis (Bland et al., 1986). A Bland and Altman plot is shown in Figure 5. Here the vertical axis is the difference between the estimated MMSE value obtained from Equation (5) and the examined MMSE value. The horizontal axis is the average of the estimated and determined MMSE values. Using the data from Figure 5, it was confirmed that all the difference values were within the range of the mean value ± 2 SD. In addition, no average offset and no fixed bias were observed. Furthermore, the correlation coefficient of the difference between the estimated value, obtained and average values was as small as 0.262, and the p value was 0.264. Thus, no significance and no proportional bias were observed.

The standardized coefficients of the MMSE estimation formula (5), as shown in Table 4, are the coefficients of the multiple regression model calculated from the standardized values of the independent and dependent variables. This is an index that indicates the magnitude of the influence of each variable in the estimation formula. As shown in Table 4, the standardization coefficients for σ_{az} (standard deviation of the z-axis acceleration) and σ_{wy} (standard deviation of the y-axis angular velocity) are large. This demonstrated that cognitive function decreased as the amount of change in the acceleration of the front–rear direction in one step increases (the standardization coefficient is negative), and the angular velocity around the axes of the left–right direction in one step decreased. This coincides with the fact that dementia causes gait disturbances such as brachybasia and walking with a shuffle (Kenichi Sugawara, 2013).

5. Conclusion

In this study, a model for estimating cognitive function based on walking information obtained from elderly individuals was derived and verified using multiple regression analysis. As a result, a cognitive function estimation formula with a high coefficient of determination was developed. This makes it possible to confirm the decline in cognitive function from walking behavior during activities of daily living and may assist in the early detection and treatment of dementia.

Acknowledgments

Part of this paper was supported by a Grant-in-Aid for Scientific Research (C) (Project No. 26502005). The authors would like to thank Enago (www.enago.jp) for English language review.

References

Bland J. M. and Altman D., Statistical methods for assessing agreement between two methods of clinical measurement,