Journal of Computer Aided Chemistry
Online ISSN : 1345-8647
ISSN-L : 1345-8647
進化論的アルゴリズムを利用したQSAR逆設計
長谷川 清木村 敏郎船津 公人
著者情報
ジャーナル フリー

2009 年 10 巻 p. 10-15

詳細
抄録
定量的構造―活性相関 (Quantitative Structure-Activity Relationship: QSAR) は、古くから行われており、成功例も多い。しかしながら、予測精度の高いモデルを構築すると、逆にモデルの解釈が難しくなり、設計が困難な場合が多い。そこで、任意の構造をコンピュータで発生させて、モデルの予測値が高い構造だけを自動発生するQSAR逆設計のシステムを構築した。システムのコアとなる構造発生部分については、EA-Inventor (Evolutionary Algorithm-Inventor) を利用した。 SMILEで表記した初期構造を入力すると、交差、変異などの操作で新たな構造を生成する。発生した構造をQSARモデルで予測して、予測値をスコアとして返す。スコアが高い構造は残して、さらに、新たな構造を生成する。このような操作を複数回繰り返して、高いスコアを持つ構造が十分そろったら終了する。EA-Inventorを文献のトリプシン阻害剤データに適用した。スコアに利用するQSARモデルとして、CoMFA (comparative molecular field analysis) を採用した。学習セットと大きく異なる構造が発生した場合には、高いペナルティー値を加え、発生構造が学習セットから大きく逸脱しないように工夫をした。出力された構造は、トリプシンの構造と高い相補性を持っており、高い阻害活性が期待できる。今回は、阻害活性のQSARモデルの応用であるが、これに、ADME (absorption, distribution, metabolism, excretion) モデルや合成の難易度を加えることもできるので、より実用的な薬物設計が可能である。
著者関連情報
© 2009 日本化学会
前の記事 次の記事
feedback
Top