Contribution of nitrergic nerve in canine gingival reactive hyperemia

Shigeru Shimada,¹ Kazuo Todoki,² Yoichi Omori,¹ Toshizo Toyama,³ Masato Matsuo,⁴ Satoko Wada-Takahashi,¹ Shun-suke Takahashi¹ and Masaichi-Chang-il Lee²,*

¹Department of Oral Science, ²Department of Nursing, Junior College, ³Department of Infection Control, Division of Microbiology, ⁴Department of Tissue-Engineering, Institute for Frontier Oral Science and ⁵Yokosuka-Shonan Disaster Health Emergency Research Center & ESR Laboratories, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-Cho, Yokosuka, Kanagawa 238-8580, Japan

(Received 2 June, 2014; Accepted 19 August, 2014; Published online 1 March, 2015)

Reactive hyperemia reflects a compensatory vasodilation response of the local vasculature in ischemic tissue. The purpose of this study is to clarify the mechanism of regulation of this response in gingival circulation by using pharmacological analysis of reactive hyperemia and histochemical analysis of gingival tissue. Application of pressure to the gingiva was used to create temporary ischemia, and gingival blood flow was measured after pressure release. Reactive hyperemia increased in proportion to the duration of pressure. Systemic hemodynamics remained unaffected by the stimulus; therefore, the gingival reactive hyperemia reflected a local adjustment in circulation. Gingival reactive hyperemia was significantly suppressed by nitric oxide (NO) synthase inhibitors, especially the neural NO synthase-selective antagonist 7-nitroindazole, but not by anticholinergic drugs, β-blockers, or antihistaminergic drugs. Moreover, immunohistochemical staining for neural NO synthase and histochemical staining for NADPH diaphorase activity were both positive in the gingival perivascular region. These histochemical and pharmacological analyses show that reactive hyperemia following pressure release is mediated by NO-induced vasodilation. Furthermore, histochemical analysis strongly suggests that NO originates from nitrergic nerves. Therefore, NO may play an important role in the neural regulation of local circulation in gingival tissue ischemia.

Key Words: reactive hyperemia, nitrergic nerve, nitric oxide, gingiva

Local circulatory regulation plays an important role in the controlled delivery of oxygen, nutrients, and immunocytes that are essential to tissue homeostasis. Reactive hyperemia is a local compensatory response of the vasculature to ischemia. A number of mechanisms have been shown to mediate reactive hyperemia, including the effect of reduced oxygen tension on smooth muscle of resistance vessels,1⁰–¹² myogenic relaxation of vascular smooth muscle caused by decreased transmural pressure during artery occlusion, vasodilatory nerve stimulation by ischemia, and hypoxia-induced humoral release of vasodilatory metabolites such as adenosine.¹³,¹⁴ One of the important pathophysiological aspect of coronary circulation, myocardial reactive hyperemia following transient interruption of coronary blood flow, was reported to involve endothelium-derived nitric oxide (NO).¹⁵–⁷ It is well known that endothelial cells produce NO as an endogenous endothelium-derived relaxing factor in response to stimuli such as shear stress.⁸–¹⁰ NO release by endothelial cells diffuses readily to the adjacent smooth muscle layer, resulting in activation of smooth muscle cell soluble guanylyl cyclase (cGC), production of the intracellular second messenger cGMP, activation of cGMP-dependent protein kinase, and ultimately in smooth muscle relaxation.¹²,¹³ NO synthases (NOS) are classified into inducible NOS (iNOS), induced by inflammation and stress, or constitutive NOS (eNOS). The neural NOS (nNOS) and the vascular endothelial eNOS are of the constitutive type.¹⁴,¹⁵ Using the NO-selective electrode, we previously demonstrated that NO mediates reactive hyperemia following pressure on the gingival tissue in rats¹⁶ or dogs.¹⁷

In that study, a slow rise in gingival tissue NO at the time of ischemia was followed by increased blood flow and sudden elevation of NO.¹¹ Because the onset of reactive hyperemia is rapid, nervous regulation may be expected to contribute. The objectives of the present study are to prove by pharmacological and histochemical analyses that NO contributes to vasodilation during canine gingival reactive hyperemia, and to clarify the source of NO formation.

Materials and Methods

Chemicals. We purchased tetrazolium, Nω-nitro-L-arginine-methyl-ester (L-NAME), 7-nitroindazole (7-NI), propanolol, atropine, pyrilamine, and cimetidine from Sigma-Aldrich (St. Louis, MO). 7-NI was dissolved in dimethyl sulfoxide (DMSO) and then diluted in 0.9% isotonic sodium chloride solution. All antagonists were prepared on the day of the experiment. NOS antibody for histochemistry was purchased from Biorbyt. (Cambridge, UK).

Hemodynamic measurements. The procedures used in this study were in accordance with the guidelines of the US National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication NO. 85-23, revised 1985) and the protocols were approved by the Committee of Ethics on Animal Experiments of Kanagawa Dental University, Yokosuka, Japan. Male beagles (8–10 kg) were anesthetized with 25 mg·kg⁻¹ sodium pentobarbital i.v. and fixed in a supine position with the gingiva surrounding the base of the mandibular canine tooth exposed. A loop catheter was inserted into an external carotid artery, and was perfused with 1,000 U·kg⁻¹ heparin to prevent coagulation. The loop catheter was equipped with a drug administration port, an electromagnetic blood flow meter probe (ME-26; Nihon Kohden, Tokyo, Japan), and blood pressure manometer (MPU-0.5; Nihon Kohden, Tokyo, Japan) for monitoring of systemic hemodynamics (Fig. 1A). Sodium pentobarbital was administered into the femoral vein as needed to maintain anesthesia. Gingival tissue blood flow (GBF) and oxygen partial pressure (PO₂) at the base of the mandibular canine tooth were measured sequentially using a non-contact laser Doppler blood flowmeter (ALF21D; Advance, Tokyo, Japan) and tissue PO₂

©2015 JCBN
S. Shimada et al.

Results

Effects of ECBF and ECBP, GBF, PO$_2$, induced by reactive hyperemia. ECBF and ECBP were unchanged by application of pressure to the gingiva whereas GBF decreased immediately, and tissue PO$_2$ decreased gradually after a delay. Tissue blood flow quickly became elevated following the release of pressure, and PO$_2$ increased gradually after a delay (Fig. 2). Comparing individual parameters of the reactive hyperemia response, we found that Mass and T$_{1/2}$ both increased with increasing duration of pressure over the 30- to 300-s range (Fig. 3).

Effects of pharmacological or NOS inhibitors on parameters of the reactive hyperemia. Parameters of gingival reactive hyperemia were unaffected by pretreatment with atropine, propranolol, pyrilamine, or cimetidine (Fig. 4 and 5). However, all three parameters of gingival reactive hyperemia were significantly reduced by L-NAME or 7-NI pretreatment (Fig. 6 and 7).

Measurement for immunohistochemical evaluation of nNOS localization. After in vivo experiments, gingival tissue was collected from the region of blood flow measurement for immunohistochemical evaluation of nNOS localization (Fig. 8). The gingival lamina propria and surrounding vascular tissue stained strongly positive for NADPH-d activity. Regions with a characteristic neuronal morphology and dark blue staining were identified as NADPH-d-positive neurons (Fig. 8A and C). Tissue sections of the same region also gave a strong positive immunohistochemical reaction indicating the presence of nNOS (Fig. 8B and D).

Discussion

Reactive hyperemia is the transient increase in organ blood flow that occurs following a brief period of ischemia, usually arterial occlusion. Hypoxia may lead to vasodilatory neuromodulation and release of vasodilatory metabolites that are thought to contribute
to the mechanisms of reactive hyperemia. It is possible that reactive hyperemia is a compensatory mechanism for increasing blood flow to the ischemic tissue. The reactive hyperemia response would be blunted in patients with cardiovascular risk factors.\(^\text{(19,20)}\)

In our experimental model, pressure on gingival tissue led to an increase in GBF without any changes in ECBF or ECBP, confirming the absence of systemic hemodynamic effects. Therefore, the specific increase in GBF during gingival reactive hyperemia clearly reflected local circulatory regulation. Our pharmacological study showed that this gingival reactive hyperemia was completely unaffected by pretreatment with the muscarinic receptor blocker atropine, the anticholinergic \(\beta\) receptor blocking agent propranolol, the \(H_1\) receptor blocking agent pyrilamine, and the \(H_2\) receptor blocking antihistaminic agent cimetidine, indicating that gingival reactive hyperemia occurs via a nonadrenergic, noncholinergic, and nonhistaminergic mechanism. On the other hand, gingival reactive hyperemia was significantly inhibited by the non-specific NOS inhibitor \(L\)-NAME as well as the \(n\)NOS-specific inhibitor 7-NI. These results strongly suggest that a nitrergic nervous component contributes to the regulation of gingival circulation. This hypothesis is also strongly supported by the histochemical and immunohistochemical localization of both \(n\)NOS protein and NADPH-d activity in the tissue. Further, the rapidity of the vascular response indicated by our analysis of reactive hyperemia parameters is consistent with nervous mediation. Blood flow rapidly attained the same peak value regardless of the duration of pressure, possibly due to maximum vasodilation immediately after release of pressure. On

Fig. 2. Representative trace of ECBP (A), ECBF (B), gingival PO\(_2\) (C), and GBF (D) during an experiment. Gray zones represent intervals (30, 60, and 300 s) of pressure application to the gingiva.

Fig. 3. (A) Dependence of gingival reactive hyperemia parameters on the duration of pressure. Values represent mean ± SEM (\(n=6\)). \(*p<0.05\), \(**p<0.01\) for comparison between the indicated groups. (B) Representative traces of gingival reactive hyperemia for 30, 60, and 300 s of pressure.
the other hand, both Mass and $T_{1/2}$ increased with increasing duration of pressure.

It is not yet clear how a decrease in tissue PO$_2$ due to gingival compression would lead to release of NO by nitricergic nerve. A possible mechanism is suggested by the report of Henrich et al.,(21,22) showing that intracellular Ca$^{2+}$ influx triggers NO release from sensory nerve cells in rats and mice. Intracellular ATP decreases in ischemic tissue, and ATP depletion inhibits activity of the Na pump (Na$^+$/K$^+$-ATPase). The consequent accumulation of intracellular Na$^+$ may cause reversal of Na$^+$/Ca$^{2+}$ exchange and importation of Ca$^{2+}$ into the cell. Another possible mechanism is that reactive hyperemia is largely determined by the ATP-sensitive potassium channel, probably through the effect on membrane potential and voltage-sensitive Ca$^{2+}$ channels that has been observed in dogs(23) and humans.(24) The ATP-sensitive potassium channel is also involved in activation of the voltage-
dependent Ca\(^{2+}\) channel. Finally, elevated neuronal intracellular Ca\(^{2+}\) may activate NOS in conjunction with calmodulin, resulting in NO production and release.\(^{25,26}\)

Hypoxia-inducible factors (HIFs) are transcription factors induced during tissue ischemia.\(^{27,28}\) HIF-1 was first discovered in 1992 as a regulator of the erythropoietin gene, but HIF-1 also controls transcription of a number of other genes, including vascular endothelium growth factor (VEGF), a factor involved in angiogenesis and cell growth in normal and carcinoma tissue.\(^{29}\) In addition, HIFs regulate transcription of several vasoactive proteins such as adrenomedullin, endothelin, and NOS-related protein.\(^{190}\) Therefore, in reactive hyperemia, HIFs may contribute to control of NO release from nitrergic nerves. It may be possible to elucidate the actual role of HIF in nitrergic nerve function in gingival tissue. In this study, the application of the hypoxic condition was too short and the duration of the hypoxia was not sufficient to induce transcription and translation of NOS. Further study is needed to ascertain whether the involvement of HIFs in the regulation of NO is associated with reactive hyperemia.

In conclusion, this study demonstrates the potential for release

Fig. 6. Effects of a cNOS inhibitor, 20 mg·kg\(^{-1}\) L-NAME (A) or an nNOS inhibitor, 20 mg·kg\(^{-1}\) 7-Ni (B) on gingival reactive hyperemia parameters. Closed columns represent animals pretreated with antagonist, open columns represented non-pretreated controls. Values represent mean ± SEM (n = 5). *p<0.05, **p<0.01 for comparison of measurements taken before and after administration of the antagonist.

Fig. 7. Effects of nNOS inhibitor on gingival reactive hyperemia. Representative recordings of gingival blood flow during and after application of pressure, measured before (A) or after (B) pretreatment with the nNOS inhibitor 7-Ni.
of NO by nitrergic nerve in canine gingival tissue, and presents evidence for its probable participation as a primary local regulator of circulation in gingival reactive hyperemia.

Acknowledgments

This research was supported in part by grants from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) (No. 10557167, 18592149, 19592371, 23593049, 23660047).

Abbreviations

- cGC: cell soluble guanylyl cyclase
- cNOS: constitutive nitric oxide synthase
- ECBF: external carotid artery blood flow
- ECBP: external carotid artery pressure
- GBF: gingival tissue blood flow
- iNOS: inducible nitric oxide synthase
- L-NAME: Nω-nitro-L-arginine-methyl-ester
- Mass: circulating blood volume
- NADPH-d: NADPH diaphorase
- 7-NI: 7-nitroindazole
- nNOS: neural nitric oxide synthase
- NO: nitric oxide
- NOS: nitric oxide synthase
- Peak: maximum blood flow
- PO2: oxygen partial pressure
- T1/2: peak half-time (T1/2)

Conflict of Interest

No potential conflicts of interest were disclosed.

References

