Leukocyte activation and the resulting oxidative stress induced by bioincompatible materials during hemodialysis impact the prognosis of patients. Despite multiple advances in hemodialysis dialyzers, the prognosis of hemodialysis patients with complications deeply related to oxidative stress, such as diabetes mellitus, remains poor. Thus, we re-evaluated the effects of hemodialysis on multiple reactive oxygen species using electron spin resonance-based methods for further improvement of biocompatibility in hemodialysis. We enrolled 31 patients in a stable condition undergoing hemodialysis using high-flux polysulfone dialyzers. The effects of hemodialysis on reactive oxygen species were evaluated by two methods: MULTIS, which evaluates serum scavenging activities against multiple hydrophilic reactive oxygen species, and i-STRAP, which detects lipophilic carbon-center radicals. Similar to previous studies, we found that serum hydroxy radical scavenging activity significantly improved after hemodialysis. Unlike previous studies, we discovered that scavenging activity against alkoxyl radical was significantly reduced after hemodialysis. Moreover, patients with diabetes mellitus showed a decrease in serum scavenging activity against alkyl peroxyl radicals and an increase in lipophilic carbon-center radicals after hemodialysis. These results suggest that despite extensive improvements in dialyzer membranes, the forms of free radicals after hemodialysis. These results suggest that despite extensive improvements in dialyzer membranes, the forms of reactive oxygen species that can be eliminated during dialysis are limited, and multiple reactive oxygen species still remain at increased levels during hemodialysis.

Key Words: hemodialysis, biocompatibility, alkyl peroxyl radical, electron spin resonance, MULTIS, i-STRAP

Chronic kidney disease (CKD) is known to be associated with high oxidative stress. Accumulation of uremic toxins with pro-oxidative properties leading to microinflammation caused by the elevation of pro-inflammatory cytokines is the key feature of CKD pathophysiology. Hemodialysis (HD), a widely conducted renal replacement therapy, acts as a double-edged sword to reduce oxidative stress in patients with CKD. Activation of polymorphonuclear leukocytes, due to contact with the membrane or other artificial surfaces in HD circuits, is the main cause of oxidative stress induced by HD. Conversely, the removal of pro-oxidative uremic toxins, especially low-molecular weight hydrophilic compounds such as trimethylamine-N-oxide or guanidino compounds, may improve the antioxidative nature of HD, leading to long-term improvement of survival rate and quality of life in patients with CKD. In addition, correction of acidosis leading to re-activation of antioxidative enzymes and reduction of volume overload leading to prevention of cardiovascular complications are antioxidative mechanisms. Thus, it is necessary for HD materials to minimize leukocyte activation and maximize antioxidative effects. In order to overcome this problem, antioxidative and biocompatible HD materials exemplified by the vitamin E-coated dialyzer have been developed. However, despite the numerous advances in HD dialyzers, the prognosis of HD patients remains unsatisfactory, especially those with diabetes mellitus (DM), a disease that promotes a highly oxidative state.

These concerns are partly due to the fact that the details of widely varied and complexed in vivo oxidative stress-related reactions have not been sufficiently analyzed. Thus, this study aimed to clarify the effect of HD on reactive oxygen species (ROS) dynamics, as the upstream events of oxidative stress reactions, based on the concept that each target site of oxidative and antioxidant reactions in the body needs to be biochemically described in a specific time and space. One explanation for this is a lack of detailed analysis of the upstream side of oxidative stress-related reactions that stimulates these cellular reactions. The identification of ROS that act as stimulators of oxidative stress reactions or interactions among ROS to generate oxidative stimulators is difficult due to the high reaction rates and complex reaction chains. Since ROS are not uniform and individual ROS have specific characteristics during in vivo reactions, an analysis of multiple ROS is required. Thus, to improve biocompatibility based on the use of antioxidative and biocompatible HD materials, one must understand the changes in ROS dynamics caused by HD.

To investigate ROS dynamics during HD, we employed two newly developed electron spin resonance (ESR)-based methods: the multiple hydrophilic free-radical scavenging assay (MULTIS) and the lipophilic radical detection assay on whole blood (i-STRAP). Although research on ROS scavenging activity by ESR is not extensive, it remains the only method available for identifying the type and examining the dynamics of ROS. The MULTIS method combines a high-performance liquid chromatography-type flow system to an ESR system and employs 5-(2,2-dimethyl-

To whom correspondence should be addressed.
E-mail: aki-hira@k.tsukuba-tech.ac.jp

doi: 10.3164/jcbn.20-141

©2021 JCBN
Table 1. Photolytic ROS production methods used in MULTIS measurements

<table>
<thead>
<tr>
<th>Free radical</th>
<th>Spin trap</th>
<th>Precursor/Sensitizer</th>
<th>UV/VL</th>
<th>Irradiation period</th>
<th>Antioxidant equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>•OH</td>
<td>CYPMPO</td>
<td>H2O2, 10 mM</td>
<td>UV</td>
<td>5 s</td>
<td>GSH</td>
</tr>
<tr>
<td>O2·-</td>
<td>CYPMPO</td>
<td>Riboflavin 20 μM</td>
<td>VL</td>
<td>60 s</td>
<td>SOD</td>
</tr>
<tr>
<td>RO·</td>
<td>CYPMPO</td>
<td>AAPH 10 mM</td>
<td>UV</td>
<td>5 s</td>
<td>Trolox</td>
</tr>
<tr>
<td>ROO·</td>
<td>CYPMPO</td>
<td>tBHP 10 mM</td>
<td>UV</td>
<td>5 s</td>
<td>α-lipoic acid</td>
</tr>
<tr>
<td>O2</td>
<td>TEMP</td>
<td>Rose bengal 200 μM</td>
<td>VL</td>
<td>30 s</td>
<td>GSH</td>
</tr>
</tbody>
</table>

ROS, reactive oxygen species; MULTIS, multiple hydrophilic free-radical scavenging assay; UV, ultraviolet (300–400 nm); VL, visual light (500–600 nm); AAPH, 2,2′-azobis-2-methyl-propanimidamide, dihydrochloride; tBHP, tert-butyl hydroperoxide; GSH, glutathione; SOD, superoxide dismutase; CYPMPO, 5-(2,2-dimethyl-1,3-prooxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide; TEMP, 4-hydroxy-2,2,6,6-tetramethylpiperidine.

Materials and Methods

Subjects and informed consent. All procedures conducted on human subjects were performed after obtaining individual written consent. The protocol that was used was approved by the Tsukuba University of Technology Committee (Authorization No. 201809). This is an observational study and, therefore, no interventions were performed on the patients.

A total of 31 stable HD patients were included in the study. We obtained and recorded clinical and demographic information for each patient. All patients were treated with high-flux polysulfone membrane dialyzers (Toray Medical Co., Ltd., Tokyo, Japan) with various membrane surface areas, adapted to the body constitution of each individual. The patients were divided into two groups depending on the cause of their end-stage renal disease: the non-diabetic group (non-DM group, n = 17) and the diabetic group (DM group, n = 14).

Sample collection. Blood samples were obtained at the onset and end of the dialysis treatment from the sampling port located on the arterial side of the HD circuit. For MULTIS measurements, sera were separated and stored in a freezer at –80 °C. Whole blood samples were incubated with DPhPMPO (biphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO)) as its spin trap and measures ESR after an organic extraction, thus reflecting lipophilic ROS. In this study, we found that the levels of several ROS were increased and not eliminated by HD, indicating that radical chain reactions are still not adequately controlled following HD. This may affect the prognosis of patients with CKD.

Results

Profile of the patients group. Clinical demographic information on the patients are summarized in Table 2. There were no significant differences in age, male/female ratio, and duration of renal replacement therapy between the two groups.

Estimation of ESR spectra in MULTIS and i-Strap. The ESR spectra of the OH·, O2·-, RO·, ROO·, and O2 adducts of the spin-trapping agent observed in the process of the MULTIS
and the i-Strap measurements were in concordance with the previously reported spectra of the corresponding radical adducts, confirmed by hyperfine coupling constants (Supplemental Fig. 1).22,27 The ESR spectra obtained from the i-Strap measurements were also in agreement with the data from a previous report.28 In both methods, the signal intensity increased with an increase in the concentration of the relevant spin trapping reagent and decreased with the addition of sera, suggesting that these methods are based on competitive reactions of antioxidants in sera or whole blood.

Effect of HD on multiple ROS scavenging activities measured by MULTIS and i-Strap. First, we analyzed the changes of multiple ROS scavenging activities before and after HD in the entire patient cohort using the MULTIS method. The individual scavenging activity values are shown in Table 3, and the graphic depictions of changes in the pre- to post-HD values are shown in Fig. 1A–F. The ‘OH scavenging activity of the HD patients before dialysis was 6.37 mM-GSheq (95% CI: 4.16 to 8.59), a number consistent with the previously reported ‘OH scavenging activity of patients with stage 5 CKD.22 Scavenging activity was significantly improved after one HD session, and the difference between pre- and post-HD values was significant (mean difference: 6.94, 95% CI 3.96 to 9.91, p<0.001; Fig. 1A).

In contrast, scavenging activities against RO• and ROO• were significantly altered after one HD treatment (for RO•, mean difference –441, 95% CI of difference –665 to –216, p<0.001; Fig. 1B; for ROO•, mean difference –526, 95% CI of difference –845 to –208, p = 0.002; Fig. 1C). There were no significant differences between pre- and post-HD serum scavenging activities against O2• (mean difference 0.698, 95% CI of difference –0.202 to 1.60, p = 0.124; Fig. 1D) and O2• (mean difference –3.98, 95% CI of difference –23.2 to 25.2, p = 0.675; Fig. 1E). The lipophilic scavenging activity showed no significant difference during the HD session (mean difference 0.0106, 95% CI of difference –0.0098 to 0.0310, p = 0.300; Fig. 1F).

Differences in the effect of hemodialysis on ROS scavenging activities depending on the presence or absence of diabetes. Since diabetes considerably contributes to the pathophysiological status of HD patients, we examined the impact of diabetes on the ROS scavenging activities. An increase in ‘OH scavenging activity was observed in both the non-DM and DM groups (mean difference 5.48, 95% CI 1.72 to 9.23, p = 0.007 for the non-DM group; mean difference 9.08, 95% CI 3.79 to 14.40, p = 0.003 for the DM group; Fig. 2A). Concurrently, a decrease in RO• scavenging activity was observed in both the non-DM and DM groups (mean difference –579, 95% CI –927 to –231, p = 0.003 for the non-DM group; mean difference –245, 95% CI –488 to –1.85, p = 0.043 for the DM group; Fig. 2B).

Conversely, a significant decrease in ROO• was only observed in the DM group (mean difference –642, 95% CI –1113 to –170, p = 0.012 for the DM group; mean difference –433, 95% CI –911 to 45.1, p = 0.073 for the non-DM group; Fig. 2C). This tendency was the same for the lipophilic carbon-centered radical (displayed as I0/I1 value), and the scavenging activity was significantly reduced in only the DM group (mean difference 0.034, 95% CI 0.002 to 0.065, p = 0.039 for the DM group; mean difference –0.005, 95% CI –0.031 to 0.021, p = 0.671 for the non-DM group; Fig. 2F). There were no significant differences between pre- and post- HD serum scavenging activities against O2• (mean difference 0.621, 95% CI of difference –0.506 to 1.730, p = 0.260 for the non-DM group; mean difference 0.792, 95% CI of difference –0.838 to 2.421, p = 0.313 for the DM group; Fig. 2D) and O2• (mean difference 11.2, 95% CI of difference –3.2 to 0.159, p = 0.291 for the non-DM group; mean difference 8.98, 95% CI of difference –3.2 to 0.159, p = 0.641 for the DM group; Fig. 2E).

The individual scavenging activity values are shown in Table 4. To clarify the redox effect of hemodialysis, a radar chart summarizing the changes in ROS scavenging activities caused by one HD session is shown in Fig. 3.

Discussion

Previous reports investigating the effects of HD treatment on the antioxidative status have yielded controversial results. Among these reports, few studies have investigated ROS involvement in the upstream oxidative stress-related reactions that occur during HD. Most reports investigating ROS studied non-specific radicals, and only few reports identified the type of ROS in detail. Moreover, most of these studies were limited to ‘OH and O2•.22,27,28,10,11 Recent studies investigating ROS scavenging activities

Table 2. Clinical profile of the patients

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Non-DM</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>31</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Age (95% CI, years)</td>
<td>68.1 (63.7–72.5)</td>
<td>67.7 (60.8–72.5)</td>
<td>68.6 (62.6–74.6)</td>
</tr>
<tr>
<td>Male/Female</td>
<td>17/14</td>
<td>9/8</td>
<td>8/6</td>
</tr>
<tr>
<td>HD Duration (mo.)</td>
<td>53.0 (33.8–72.2)</td>
<td>52.6 (22.7–82.6)</td>
<td>53.5 (26.0–81.0)</td>
</tr>
</tbody>
</table>

Cause of CKD in non-DM patients: chronic glomerulonephritis 8, nephrosclerosis 5, lupus nephritis 1, myeloma kidney 1, and unknown 2. All patients were treated with polysulfone dialyzers with various surface areas. DM, diabetes mellitus; HD, hemodialysis; 95% CI, 95% confidence interval.

Table 3. Serum scavenging activities against multiple ROS, before and after HD

<table>
<thead>
<tr>
<th>ROS</th>
<th>Pre-HD Mean (95% CI)</th>
<th>Post-HD Mean (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘OH</td>
<td>6.37 (4.16–8.59)</td>
<td>13.3 (9.41–17.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>RO•</td>
<td>1,180 (948–1,412)</td>
<td>752 (586–919)</td>
<td><0.001</td>
</tr>
<tr>
<td>ROO•</td>
<td>1,417 (1,057–1,777)</td>
<td>934 (644–1,223)</td>
<td>0.002</td>
</tr>
<tr>
<td>O2•</td>
<td>5.97 (4.94–7.01)</td>
<td>6.67 (5.79–7.55)</td>
<td>0.124</td>
</tr>
<tr>
<td>LCCR</td>
<td>47.4 (33.1–61.7)</td>
<td>43.4 (25.4–61.4)</td>
<td>0.675</td>
</tr>
<tr>
<td>I0/I1</td>
<td>1.96 (1.75–2.16)</td>
<td>1.89 (1.67–2.10)</td>
<td>0.301</td>
</tr>
</tbody>
</table>

The scavenging activities are converted to the equivalent unit of the specific scavenger against each ROS. The scavenging activity against the lipophilic carbon-centered radical is expressed as I0/I1 value (see Materials and Methods). HD, hemodialysis; ROS, reactive oxygen species; 95% CI, 95% confidence interval; GSH, glutathione; α-LA, α-lipoic acid; TROLOX, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; SOD, superoxide dismutase; LCCR, lipophilic carbon-centered radical.

*See online: https://doi.org/10.3164/jcbn.20-141 doi: 10.3164/jcbn.20-141 ©2021 JCBN
A. Hirayama et al.

Consistent with our current result, we have previously reported that serum ‘OH scavenging activity is reduced in HD patients and that a single HD session can restore this activity to the level equivalent to that seen in a healthy human.(31) Although contradictory results have been reported on the effect of HD on ‘OH scavenging activity, previous studies using ESR have shown an increase in the scavenging activity, regardless of the generation method of the hydroxyl radicals.(32–36) Thus, we strongly suggest that the ‘OH scavenging activity may be restored by HD.

The effect of HD on O$_2^-$ dynamics remains controversial. Several previous studies found an increased production of O$_2^-$ in patients after HD.(37,38) A previous report from our co-author revealed that O$_2^-$ scavenging activity was enhanced in the sera of HD patients.(32) Conversely, the O$_2^-$ scavenging activity of HD patients, analyzed by direct scavenging measurements or the O$_2^-$ dismutase (SOD) enzyme assay, is reportedly higher in patients with CKD than in healthy individuals.(22,28,39) Consistent with these reports, our results did not show remarkable changes in O$_2^-$ scavenging activity after a single session of HD. Moreover, long-term usage of the vitamin E-coated dialyzer, which directly scavenges intradialyzer O$_2^-$, has enhanced O$_2^-$ scavenging activity.(15) Since the uremic condition itself is a highly oxidative state,(15) we suggest that the constant improvement against uremic oxidative stress is more influential than the O$_2^-$ production brought about by a single HD process.(1–3,4,40)

The influences of ROO' and ROO' in kidney diseases have rarely been investigated,(41–43) and no study has analyzed their association with HD. Our results showed that both ROO' and ROO' scavenging activities deteriorated after a single HD session, suggesting an uncontrolled production of both radicals during HD. Although limited studies have investigated the pathophysiological role of ROO' in diseases, established reports have indicated their strong cytotoxicity, leading to carcinogenesis and cardiovascular damage.(41,44,45) ROO' are generated in a reaction between heme iron and lipid peroxide produced by spontaneous oxidation of...
unsaturated fatty acid. In a ferric nitrilotriacetate (Fe-NTA)-induced renal carcinoma rat model, ROO• was detected in renal tissue. Moreover, ROO• has a longer half-life in vivo than other radicals in biological circumstances, leading to further production of carbon-centered radicals. Therefore, the control of ROO• generation may be an important strategy for improving the survival rate of HD patients. Moreover, lipophilic carbon-centered radicals are cytotoxic and have relatively long half-lives. These radicals have been reported in acute lung injury and in rat models of chronic alcohol-induced pancreatitis. Scavenging activities against these two ROS may serve as crucial markers for the evaluation of biocompatibility.

There are several limitations in this study. First, our method evaluated ROS scavenging activity but did not directly detect the ROS themselves. Direct detection of ROS in biological samples is difficult, and there is a certain discrepancy between the dynamics of ROS and ROS scavenging activity. However, measurement of scavenging activity against a specific ROS is a well-established method and is able to serve as an evaluating tool for ROS dynamics. Thus, the evaluation of ROS scavenging activity...
Table 4. Differences in the effects of hemodialysis on the various serum ROS scavenging activities, depending on the presence or absence of diabetes

<table>
<thead>
<tr>
<th>ROS</th>
<th>Non-DM</th>
<th>DM</th>
<th>p</th>
<th>Pre HD Mean</th>
<th>Post HD Mean</th>
<th>p</th>
<th>Pre HD Mean</th>
<th>Post HD Mean</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>'OH</td>
<td>mM-GSHeq</td>
<td>5.73 (2.41–9.04)</td>
<td>11.2 (5.4–17)</td>
<td>0.007</td>
<td>7.32 (4.3–10.3)</td>
<td>16.4 (11.4–21.4)</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROO⁺</td>
<td>µM-TROLOXeq</td>
<td>1,274 (1,000–1,547)</td>
<td>722 (543–900)</td>
<td>0.003</td>
<td>1,040 (583–1,497)</td>
<td>795 (442–1,148)</td>
<td>0.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROO⁺</td>
<td>µM-αLA eq</td>
<td>1,331 (823–1,838)</td>
<td>956 (568–1,344)</td>
<td>0.073</td>
<td>1,548 (922–2,174)</td>
<td>906 (406–1,407)</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂⁻</td>
<td>UmL-SOD eq</td>
<td>5.77 (4.21–7.32)</td>
<td>6.39 (5.19–7.59)</td>
<td>0.26</td>
<td>6.22 (4.69–7.76)</td>
<td>7.02 (5.56–8.47)</td>
<td>0.313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'O₂</td>
<td>µM-GSHeq</td>
<td>45.1 (23–67.2)</td>
<td>33.9 (22.7–45.1)</td>
<td>0.291</td>
<td>43.5 (31.2–55.7)</td>
<td>52.5 (6.65–98.3)</td>
<td>0.641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCCR</td>
<td>i0/I⁻¹</td>
<td>1.86 (1.59–2.13)</td>
<td>1.93 (1.68–2.18)</td>
<td>0.671</td>
<td>2.09 (1.76–2.41)</td>
<td>1.83 (1.43–2.24)</td>
<td>0.039</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The scavenging activities are converted to the equivalent unit of the specific scavenger against each ROS. The scavenging activity against the lipophilic carbon-centered radical is expressed as i0/I⁻¹ value (see Materials and Methods). HD, hemodialysis; DM, diabetes mellitus; ROS, reactive oxygen species; 95% CI, 95% confidence interval; GSH, glutathione; TROLOX, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; αLA, α-lipoic acid; SOD, superoxide dismutase; LCCR, lipophilic carbon-centered radical.

Fig. 3. A radar chart of serum scavenging activities comparing the non-DM and DM groups. Solid lines with circle markers (○●) indicate non-DM patients and broken lines with square markers (□■) indicate DM patients. Open markers (○□) indicate pre-HD activities and filled markers (●■) indicate post-HD activities of the corresponding group. Percentage differences in the scavenging activities are shown with respect to those of all patients before HD. HD, hemodialysis; DM, diabetes mellitus; LCCR, lipophilic carbon-centered radical.

in this paper reflects the ROS dynamics in the upstream region prior to cellular reactions against oxidative stress reactions. Second, our sample size is limited, and we only employed dialyzers containing polysulfone membranes. However, the characteristics of our study population are similar to that of the population of Japanese HD patients in terms of age, dialysis history, and distribution of primary diseases.(55–57) Polysulfone dialyzers are the most biocompatible dialyzer and are widely used.(56,53,24) Thus, we believe that our study cohort reflects the general population of dialysis patients. Evaluations with other membrane materials are required in further studies.

In our results, scavenging activities against alkyl and lipophilic carbon-centered radicals measured by i-STRap were reduced only in the patients with DM, indicating that the deterioration of ROS scavenging activity was more remarkable in the DM group than in the non-DM group. Patients with DM have more unfavorable prognoses than non-DM patients due to higher cardiovascular complication rates. The pathophysiology of these complications is strongly associated with oxidative stress.(55–57) Thus, our results suggest that to improve the prognosis in HD patients with DM, the control of ROO⁺ radical and carbon-center radical is a promising strategy.

Acknowledgments

This study was funded by the Promotional Project for Sophistication of Education and Research of Tsukuba University of Technology under Grant Number H29-Division A-03 (to AH). We wish to thank Professor Yashige Kotake of the Oklahoma Medical Research Foundation, USA, for his support during the MULTIS measurements, and Professor Takashi Moritake and Dr. Lue Sun of the Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, for their support during the i-STRap measurements. English language of this paper was proofread by Editage (www.editage.jp).

Conflict of Interest

The authors report no biomedical financial interests or potential conflicts of interest relevant to this study.

References

©2021 JCBN
50

55 Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. *Clin Transl Immunology* 2018; **7**: e1016.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/).