Journal of Clinical Biochemistry and Nutrition
Online ISSN : 1880-5086
Print ISSN : 0912-0009
ISSN-L : 0912-0009

This article has now been updated. Please use the final version.

Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients
Ryo InoueRyuji Ohue-KitanoTakamitsu TsukaharaMasashi TanakaShinya MasudaTakayuki InoueHajime YamakageToru KusakabeKoji HasegawaAkira ShimatsuNoriko Satoh-Asahara
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 17-44

Details
Abstract

We assessed whether gut microbial functional profiles predicted from 16S rRNA metagenomics differed in Japanese type 2 diabetic patients. A total of 22 Japanese subjects were recruited from our outpatient clinic in an observational study. Fecal samples were obtained from 12 control and 10 type 2 diabetic subjects. 16S rRNA metagenomic data were generated and functional profiles predicted using “Phylogenetic Investigation of Communities by Reconstruction of Unobserved States” software. We measured the parameters of glucose metabolism, gut bacterial taxonomy and functional profile, and examined the associations in a cross-sectional manner. Eleven of 288 “Kyoto Encyclopedia of Genes and Genomes” pathways were significantly enriched in diabetic patients compared with control subjects (p<0.05, q<0.1). The relative abundance of almost all pathways, including the Insulin signaling pathway and Glycolysis/Gluconeogenesis, showed strong, positive correlations with hemoglobin A1c (HbA1c) and fasting plasma glucose (FPG) levels. Bacterial taxonomic analysis showed that genus Blautia significantly differed between groups and had negative correlations with HbA1c and FPG levels. Our findings suggest a novel pathophysiological relationship between gut microbial communities and diabetes, further highlighting the significance and utility of combining prediction of functional profiles with ordinal bacterial taxonomic analysis (UMIN Clinical Trails Registry number: UMIN000026592).

Content from these authors
© 2017 JCBN
feedback
Top