抄録
The authors' group has developed the program named DC-DFTB-K for the on-the-fly quantum mechanical molecular dynamics (MD) simulation of huge systems using the density-functional tight binding (DFTB) method. The combination with the divide-and-conquer (DC) method enables linear-scaling calculation of DFTB energy and its derivatives. Due to the massively parallel implementation, the program can treat systems containing one million atoms on the K computer. In this paper, the recent extension of DC-DFTB-MD technique is outlined together with the illustrative application to chemical reaction dynamics in lithium-ion device.